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Abstract 

We present a new way to derive dissipative, optimizing dynamics from 
the Lagrangian formulation of mechanics. It can be used to obtain both 
standard and novel neural net dynamics for optimization problems. To 
demonstrate this we derive standard descent dynamics as well as nonstan­
dard variants that introduce a computational attention mechanism. 

1 INTRODUCTION 

Neural nets are often designed to optimize some objective function E of the current 
state of the system via a dissipative dynamical system that has a circuit-like imple­
mentation. The fixed points of such a system are locally optimal in E. In physics the 
preferred formulation for many dynamical derivations and calculations is by means 
of an objective function which is an integral over time of a "Lagrangian" function, 
L. From Lagrangians one usually derives time-reversable, non-dissipative dynamics 
which cannot converge to a fixed point, but we present a new way to circumvent 
this limitation and derive optimizing neural net dynamics from a Lagrangian. We 
apply the method to derive a general attention mechanism for optimization-based 
neural nets, and we describe simulations for a graph-matching network. 

2 LAGRANGIAN FORMULATION OF NEURAL 
DYNAMICS 

Often one must design a network with nontrivial temporal behaviors such as run­
ning longer in exchange for less circuitry, or focussing attention on one part of a 
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problem at a time. In this section we transform the original objective function (c.f. 
(Mjolsness and Garrett, 1989]) into a Lagrangian which determines the detailed dy­
namics by which the objective is optimized. In section 3.1 we will show how to add 
in an extra level of control dynamics. 

2.1 THE LAGRANGIAN 

Replacing an objective E with an associated Lagrangian, L, is an algebraic trans­
formation: 

E[v] - L[v, vlq] = K[v, vlq] + ~~. 
The "action" 8 = Joo Ldt is to be extremized in a novel way: 

-00 

(1) 

(2) 

In (1), q is an optional set of control parameters (see section 3.1) and K is a cost­
of-movement term independent of the problem and of E. For one standard class of 
neural networks, 

so 

E[v] = -(1/2) L TijViVj - L hivi + L ¢i(Vi) 
ij 

- 8E/8vi = L TijVj + hi - g-l(Vi), 
j 

where g-l(v) = ¢'(v). Also dE/dt is of course Ei(8E/8vi)Vi. 

2.2 THE GREEDY FUNCTIONAL DERIVATIVE 

(3) 

(4) 

In physics, Lagrangian dynamics usually have a conserved total energy which pro­
hibits convergence to fixed points. Here the main difference is the unusual func­
tional derivative with respect to v rather than v in equation (2). This is a "greedy" 
functional derivative, in which the trajectory is optimized from beginning to each 
time t by choosing an extremal value of v(t) without considering its effect on any 
subsequent portion of the trajectory: 

6 1t d'L[' ] ~()8L[v,v] ~() 6 100 d' ['] 68 () 
6Vi(t) -00 t v, v ~ u 0 8Vi(t) = u 0 6Vi(t) -00 t L v, v oc 6Vi(t)' 5 

Since 
68 8L 8K 8E 
6Vi = 8Vi = 8Vi + 8Vi' (6) 

equations (1) and (2) preserve fixed points (where 8E/8vi = 0) if 8K/8vi = 0 ¢} 

v = o. 

2.3 STEEPEST DESCENT DYNAMICS 

For example, with K = Ei ¢(vdr) one may recover and generalize steepest-descent 
dynamics: 

E[v] - L[vlr) = 4= ¢(vdr) + 4= ~~ Vi, 
• • 

(7) 
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Figure 1: (a) Greedy functional derivatives result in greedy optimization: the 
"next" point in a trajectory is chosen on the basis of previous points but not future 
ones. (b) Two time variables t and T may increase during nonoverlapping inter­
vals of an underlying physical time variable, T. For example t = J dT(h(T) and 
T = J dT<p2(T) where <Pl and <P2 are nonoverlapping clock signals. 

8L/8vi(t) = 0 ~ <p'(vdr)/r + 8E/8vi = 0, l.e. (8) 

Vi = rg( - r 8E/8vi ). (9) 

As usual 9 = (<p') -1. A transfer function with -1 < g( x) < 1 could enforce a 
velocity constraint -r < Vi < r . 

2.4 HOPFIELD/GROSSBERG DYNAMICS 

With a suitable J( one may recover the analog neuron dynamics of Hopfield (and 
Grossberg): 

L ~ 1 ' 2,( ) ~ 8E . _ ( ) = L.J -2 Ui 9 Ui + L.J -8 . Vi, Vi = 9 Ui • 
. • VI 
I I 

8L/8ui(t) = 0 ~ Ui + 8E/8vi = 0, i.e. 

Ui = -8E/8vi and Vi = g(Ui) . 

(10) 

(11) 

(12) 

We conjecture that this function J( [Ui, ud is optimal in a certain sense: if we lin­
earize the u dynamics and consider the largest and smallest eigenvalues, extremized 
separately over the entire domain of u, with -T constrained to have bounded pos­
itive eigenvalues, then the ratio of such largest and smallest eigenvalues is minimal 
for this J(. This criterion is of practical importance because the largest eigenvalue 
should be bounded for circuit implement ability, and the smallest eigenvalue should 
be bounded away from zero for circuit convergence in finite time. 
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2.5 A CHANGE OF VARIABLES SIMPLIFIES L 

We note a change of variable which simplifies the kinetic energy term in the above 
dynamics, for use in the next section: 

L[w] = Li ~wl + Li :~l Wi, 
8L/8wi(t) == 0 ~ Wi + 8E/8wi = 0, I.e. 
Wi = -8E/8wi 

(13) 

which is supposed to be identical to Ui = -8E/8vi, Vi = g(Ui) (c.f. (12)). This can 
be arranged by choosing w: 

(14) 

i.e. 

Wi = JUI du.jg'(u) and Vi = JWi dw.jg'(u(w)). (15) 

3 APPLICATION TO COMPUTATIONAL ATTENTION 

We can introduce a computational "attention mechanism" for neural nets as follows. 
Suppose we can only afford to simulate A out of N ~ A neurons at a time in a 
large net. We shall do this by simulating A real neurons indexed by a E {I ... A}, 
corresponding to a dynamically chosen subset of the N virtual neurons indexed 
by i E {l. .. N}. 

3.0.1 Constraints 

In great generality, the correspondance can be chosen dynamically via a sparse 
matrix of control parameters 

qia = ria E [0,1] constrained so that 
L:i ria = 1, 
La ria < 1. 

(16) 

Alternatively, the r variables can be coordinated to describe a "window" or "focus" 
of attention by taking ria to be a function of a small number of parameters q 
specifying the window, which are adjusted to optimize E[r[q]]. This procedure, 
which can result in significant economies, was used for our computer experiments. 

3.0.2 Neuron Dynamics 

The assumed control relationship is 

Wi = Lriaka, 
a 

(17) 

i.e. virtual neuron Wi follows the real neuron to which r assigns it. Equation (15) 
then determines Ui(t) and viet). A plausible kinetic energy term for k is the same 



A Lagrangian Approach to Fixed Points 81 

as for w (c.f. equation (13», since that choice (equivalent to the Hoplield case) has 
a good eigenvalue ratio for the u variables. The Lagrangian for the real neurons 
becomes 

. 1 ~·2 ~ 8E . 
L[k] = - L.Jka + L.J -8 . riaka 

2 . WI 
a la 

and the equations of motion (greedy variation) may be shown to be 

ka = L riavg'(U(w,» [I: 71jvj + h, - u,]. 
, j 

3.1 CONTROL DYNAMICS FOR ATTENTION 

(18) 

(19) 

Now we need dynamics for the control parameters r or more generally q. An objec­
tive function transformation (proposed and subjected to preliminary experiments in 
[Mjolsness, 1987]) can be used to construct a new objective for the control parame­
ters, q, which rewards speedy convergence of the original objective E as a function 
of the original variables v by measuring dE/dt: 

E[v] -+ E[q] b(dE/dt) + Ecost [q] 
= b[2:i(8E/8v,)tid + Ecost [q], 

(20) 

where b is a monotonic, odd function that can be used to limit the range of E. We 
can calculate dE/dt from equations (17) and (19): 

Eb~eftt(r) = 6(:~) = 6 [f.><. :! k.] = -6 [~ (~>'.Vg,(U') ;~ y] , 
(21) 

where 8E/8vi = 2:j 71jvj + hi - Ui. If we assume that Ecost favors fixed points 
for which ria ~ 0 or 1 and 2:i ria ~ 0 or 1, there is a fixed-point-preserving 
transformation of (21) to 

Eb~eftt(r) = -6 [~r,.9'( U;)(;:')2] . (22) 

This is monotonic in a linear function of r. It remains to specify Ecost and a kinetic 
energy term [(. 

3.2 INDEPENDENT VIRTUAL NEURONS 

First consider independent ria. As in the Tank-Hopfield [Tank and Hopfield, 1986] 
linear programming net, we could take 

Thus the r dynamics just sorts the virtual neurons and chooses the A neurons 
with largest g' (ui)8 E / 8v, . For dynamics, we introduce a new time variable T that 
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may not even be proportional to t (see figure 1 b) and imitate the Lagrangians for 
Hopfield dynamics: 

'" 1 (dPia ) 2 , d (_ ~) L = ~ 2 dr 9 (Pi) + dr Ebeneflt + ECOBt ; 
sa 

(24) 

3.3 JUMPING WINDOW OF ATTENTION 

A far more cost-effective net involves partitioning the virtual neurons into real-net­
sized blocks indexed by a, so i -+ (a, a) where a indexes neurons within a block. 
Let XQ E [0,1] indicate which block is the current window or focus of attention, i.e. 

(26) 

Using (22), this implies 

Ebeneflt[x] = -b [Z:XQ Z:g'(UQa)(8~E )2] , 
Q a Qa 

(27) 

and 
(28) 

Since ECOBt here favors LQ XQ = 1 and XQ E {O, I}, Ebeneflt has the same fixed 
points as, and can be replaced by, 

(29) 

Then the dynamics for X is just that of a winner-take-all neural net among the blocks 
which will select the largest value of b[La g'(uQa )(8E/8vQa)2]. The simulations of 
Section 4 report on an earlier version of this control scheme, which selected instead 
the block with the largest value of La 18E/8vQa l. 

3.4 ROLLING WINDOW OF ATTENTION 

Here the r variables for a neural net embedded in a d-dimensional space are deter­
mined by a vector x representing the geometric position of the window. ECOBt can be 
dropped entirely, and E can be calculated from r(x). Suppose the embedding is via 
a d-dimensional grid which for notational purposes is partitioned into window-sized 
squares indexed by integer-valued vectors 0: and a. Then 

where 

8w(x) {6[1/4 - (xp + L)2] 
----'--'- = 6[(x~ - L)2 - 1/4] 
8x~ 0 

(30) 

if -1/2 $xp+L< 1/2 
if -1/2 $ x~ - L < 1/2 (31) 

otherwise 
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and 

E[x] = -b [z: w(Lo: + a - X)g'(uo:a)(8~E )2] . 
o:a o:a 

(32) 

The advantage of (30) over, for example, a jumping or sliding window of attention 
is that only a small number of real neurons are being reassigned to new virtual 
neurons at anyone time. 

3.4.1 Dynamics of a Rolling Window 

A candidate Lagrangian is 

L[x] = ! '" (dXp.) 2 + '" 8E dxp. , 
2 L...J dT L...J 8x P. dT 

P. p. 

(33) 

whence greedy variation hS/hz = 0 yields 

dX JJ = _ [2: 8w(x - Lo: - a) g'(Uo:a)( 8E )2] X b' [2: wg'(Uo:a)( 8E )2] 
dT o:a OX JJ OVo:a o:a 8vo:a 

(34) 
We may also calculate that the linearized dynamic's eigenvalues can be bounded 
away from infinity and zero. 

4 SIMULATIONS 

A jumping window of attention was simulated for a graph-matching network in 
which the matching neurons were partitioned into groups, only one of which was 
active (ria = 1) at any given time. The resulting optimization method produced 
solutions of similar quality as the original neural network, but had a smaller re­
quirement for computational space resources at any given time. 
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