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Abstract 

The Adaptive Solutions CN APS architecture chip is a general purpose 
neurocomputer chip. It has 64 processors, each with 4 K bytes of local 
memory, running at 25 megahertz. It is capable of implementing most 
current neural network algorithms with on chip learning. This paper dis­
cusses the implementation of the Back Propagation algorithm on an array 
of these chips and shows performance figures from a clock accurate hard­
ware simulator. An eight chip configuration on one board can update 2.3 
billion connections per second in learning mode and process 9.6 billion 
connections per second in feed forward mode. 

1 Introduction 

The huge computational requirements of neural networks and their natural paral­
lelism have led to a number of interesting hardware innovations for executing such 
networks. Most investigators have created large parallel computers or special pur­
pose chips limited to a small subset of algorithms. The Adaptive Solutions CNAPS 
architecture describes a general-purpose 64-processor chip which supports on chip 
learning and is capable of implementing most current algorithms. Implementation 
of the popular Back Propagation (BP) algorithm will demonstrate the speed and 
versatility of this new chip. 
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2 The Hardware Resources 

The Adaptive Solutions CNAPS architecture is embodied in a single chip digital 
neurocomputer with 64 processors running at 25 megahertz. All processors receive 
the same instruction which they conditionally execute. Multiplication and addition 
are performed in parallel allowing 1.6 billion inner product steps per second per 
chip . Each processor has a 32-bit adder, 9-bit by 16-bit multiplier (16 by 16 in two 
clock cycles), shifter, logic unit, 32 16-bit registers, and 4096 bytes oflocal memory. 
Input and output are accomplished over 8-bit input and output buses common 
to all processors. The output bus is tied to the input bus so that output of one 
processor can be broadcast to all others. When multiple chips are used, they appear 
to the user as one chip with more processors. Special circuits support finding the 
maximum of values held in each processor and conserving weight space for sparsely 
connected networks. An accompanying sequencer chip controls instruction flow, 
input and output. 

3 The Back Propagation Algorithm Implementation 

Three critical issues must be addressed in the parallel implementation of BP on effi­
cient hardware. These are the availability of weight values for back propagating the 
error, the scaling and precision of computations, and the efficient implementation 
of the output transfer function. 

BP requires weight values at different nodes during the feed forward and back 
propagation phases of computation. This problem is solved by having a second set 
of weights which is the transpose of the output layer weights. These are located on 
hidden node processors. The two matrices are updated identically. The input to the 
hidden layer weight matrix is not used for error propagation and is not duplicated. 

BP implementations typically use 32-bit floating point math. This largely eliminates 
scaling, precision and dynamic range issues. Efficient hardware implementation 
dictates integer arithmetic units with precision no greater than required. Baker 
[Bak90] has shown 16-bit integer weights are sufficient for BP training and much 
lower values adequate for use after training. 

With fixed point integer math, the position of the binary point must be chosen. In 
this implementation weights are 16 bits and use 12 bits to the right of the binary 
point and four to the left including a sign bit. They range from -8 to +8. Input 
and output are represented as 8-bit unsigned integers with binary point at the left. 
The leaning rate is represented as an 8-bits integer with two bits to the left of the 
binary point and values ranging from .016 to 3.98. Error is represented as 8 bit 
signed integers at the output layer and with the same representation as the weights 
at the hidden layer. 

This data representation has been used to train benchmark BP applications with 
results comparable to the floating point versions [HB91]. 

The BP sigmoid output function is implemented as an 8-bit by 256 lookup table. 

During the forward pass input values are broadcast to all processors from off chip 
via the input bus or from hidden nodes via the output bus to the input bus. During 
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the backward error propagation, error values are broadcast from the output nodes 
to hidden nodes. 

The typical BP network has two computational layers, the hidden and output layers. 
They can be assigned to the same or different processor nodes (PN s) depending on 
available memory for weights. PNs used for the hidden layer contain the transpose 
weights of the output layer for back propagating error. If momentum or periodic 
weight update are used, additional storage space is allocated with each weight. 

In this implementation BP can be mapped to any set of contiguous processors 
allowing multiple networks in CNAPS memory simultaneously. Thus, the output 
of one algorithm can be directly used as input to another. For instance, in speech 
recognition, a Fourier transform performed on the PN array could be input to a 
series of matched BP networks whose hidden layers run concurrently. Their output 
could be directed to an LVQ2 network for final classification. This can all be 
accomplished without any intermediate results leaving the chip array. 

4 Results 

BP networks have been successfully run on a hardware clock accurate simulator 
which gives the following timing results. In this example an eight-chip implemen­
tation (512 processors) was used. The network had 1900 inputs, 500 hidden nodes 
and 12 outputs. Weights were updated after each input and no momentum was 
used. The following calculations show BP performance: 

TRAINING PHASE 

Overhead clock cycles per input vector = 360 
Cycles per input vector element = 4 
Cycles per hidden node = 4 
Cycles per output node = 7 
Cycles per vector = 360+(1900*4)+(500*4)+(12*7) = 10,044 
Vectors per second = 25,000,000 / 10,044 = 2,489 
Total forward weights = (1900*500)+(500*12) = 956,000 

Weight updates per second = 956,000*2,489 = 2,3'79,484,000 

FEED FORWARD ONLY 

Overhead cycles per input vector = 59 
Cycles per input vector element = 1 
Cycles per hidden node = 1 
Cycles per output node = 1 (for output of data) 
Cycles per vector = 59+1900+500+12 = 2,471 
Vectors per second = 25,000,000/2,471 = 10,117 

Connections per second = 956,000*10,11'7 = 9,6'71,852,000 
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5 Comparative Performance 

An array of eight Adaptive Solutions CN APS chips would execute the preceding BP 
network at 2.3 billion training weight updates per second or 9.6 billion feed forward 
connections per second. These results can be compared with the results on other 
computers shown in table 1. 

MACHINE MCUPS MCPS WTS 
SUN 3 lD88j .034 0.25 fp 
SAle SIGMA-llD88j 8 fp 
WARP [PGTK88] 17 fp 
CRAY 2 lPGTK88J 7 fp 
CRAY X-MP lD88J 50 fp 
CM-2 (65,536) [ZMMW90] 40 182 fp 
GF-1l1566) lWZ89j 901 fp 
8 ADAPTIVE CN APS chips 2,379 9,671 16 bit int 

Table 1. Comparison of BP performance for various computers and 8 Adaptive 
Solutions CNAPS chips on one board. MCUPS is Millions of BP connection updates 
per second in training mode. MCPS is millions of connections processed per second 
in feed forward mode. WTS is representation used for weights. 

6 Summary 

The Adaptive Solutions CN APS chip is a very fast general purpose digital neuro­
computer chip. It is capable of executing the Back Propagation algorithm quite 
efficiently. An 8 chip configuration can train 2.3 billion connections per second and 
evaluate 9.6 billion BP feed forward connections per second. 
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