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Abstract 

This paper examines a class of neuron based 
learning systems for dynamic control that rely on 
adaptive range coding of sensor inputs. Sensors are 
assumed to provide binary coded range vectors that 
coarsely describe the system state. These vectors are 
input to neuron-like processing elements. Output 
decisions generated by these "neurons" in turn 
affect the system state, subsequently producing new 
inputs. Reinforcement signals from the 
environment are received at various intervals and 
evaluated. The neural weights as well as the ran g e 
b 0 u n dar i e s determining the output decisions are 
then altered with the goal of maximizing future 
reinforcement from the environment. Preliminary 
experiments show the promise of adapting "neural 
receptive fields" when learning dynamical control. 
The observed performance with this method exceeds 
that of earlier approaches. 
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1 INTRODUCTION 

A major criticism of unsupervised learning and control 
techniques such as those used by Barto et al. (Barto t 1983) and by 
Albus (Albus t 1981) is the need for a priori selection of region 
sizes for range coding. Range coding in principle generalizes 
inputs and reduces computational and storage overheadt but the 
boundary partitioningt determined a priori t is often non-optimal 
(for example t the ranges described in (Barto t 1983) differ from 
those used in (Barto 1982) for the same control task differ). 
Determination of nearly optimal t or at least adequatet regions is 
left as an additional task that would require that the system 
dynamics be analyzedt which is not always possible. 

To address this problem t we move region boundaries adaptively t 
progressively altering the initial partitioning to a more 
appropriate representation with no need for a priori knowledge. 
Unlike previous work (Michie t 1968)t (Barto t 1983)t (Andersont 
1982) which used fixed coderSt this approach produces adaptive 
coders that contract and expand regions/ranges. During 
adaptation t frequently active regions/ranges contract t reducing 
the number of situations in which they will be activated, and 
increasing the chances that neighboring regions will receive 
input instead. This class of self-organization is discussed in 
Kohonen (Kohonent 1984)t (Rittert 1986t 1988). The resulting 
self-organizing mapping will tend to track the environmental 
input probability density function. Adaptive range coding 
creates a focusing mechanism. Resources are distributed 
according to regional activity level. More resources can be 
allocated to critical areas of the state space. Concentrated activity 
is more finely discriminated and corresponding control decisions 
are more finely tuned. 

Dynamic shaping of the region boundaries can be achieved 
without sacrificing memory or learning speed. Also t since the 
region boundaries are finally determined solely by the 
environmental dynamics t optimal a priori ranges and regIOn 
specifications are not necessary. 

As an example t consider a one dimensional state spacet as shown 
in figures 1 a and 1 b. It is is partitioned into three regions by the 
vertical lines shown. The heavy curve indicates a theoretical 
optimal control surface (unknown a priori) of a state space 
which the weight in each region should approximate. The dashed 
horizontal lines show the best learned weight values for the 
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respective partitionings. Weight values approximate the mean 
value of the true control surface weight in each of the regions. 

Weight Weight 

state space state space 

Figure 1a Figure 1b 
Even Region Partition Adapted Region Partition 

An evenly partitioned space produces the weights shown in 
figure 1 a. Figure 1 b shows the regions after the boundaries have 
been adjusted. and the final weight values. Although the weights 
in both 1a and 1b reflect the mean of the true control surface (in 
their respective regions). adaptive partitioning is able to 
represent the ideal surface with a smaller mean squared error. 

2 ADAPTIVE RANGE CODING RULE 

For the more general n dimensional control problem using 
adaptive range boundaries. the shape of each region can change 
from an initial n dimensional prism to an n dimensional 
polytope. The polytope shape is determined by the current 
activation state and its average activity. The heuristic for our 
adaptive range coding is to move each region vertex towards or 
away from the current activation state according to the 
rei nf 0 r c e men t. The equation which adjusts each regIOn 
boundary is adapted in part from the weight alteration formula 
used by Kohonen's topological mapping (Kohonen 1984). Each 
region (i) consists of 2n vertices (V ij<t). 1 ~ j ~ 2n) describing 
that region's boundaries that move toward or away from the 
current state activity (ACt» depending on the reinforcement r. 

[1] V ij(t+1) = Yilt) + K r h(Vij(t) - A(t» 

w her e K is the gain. r is the reinforcement (or error) used to 
alter the weight in the region. and hO is a Gaussian or a 
difference of Gaussians function. 
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3 SIMULATION RESULTS 

In our experiments, the expected reinforcement of the ASE/ACE 
system ~ (described in (Barto 1983)) was also used as r in [1]. 
Simple pole balancing (see figure 2) was chosen, rather than the 
cart-pole balancing task in (Barto 1983). The time step twas 
chosen to be large (0.05 seconds) and initial region boundaries of 

• 9 and 9 were chosen as (-12,-6,0,1,6,12) and (-00, -10,10,00). All other 
parameters were identical to those described in (Barto, 1983). 

Impulse 
Right 

• 
Impulse 
Left 

III 

Figure 2: The Pole Balancing Task 

The standard ASE, ASE/ACE, and adaptive range coding algorithms 
were compared on this task. One hundred runs of each algorithm 
were performed. Each run consisted of a sequence of trials and 
each trial counted the number of time steps until the pole fell. If 
the pole had not fallen after 20,000 time steps, the trial was 
considered to be successful and it was terminated. Each run was 
terminated either after 100 trials, or after the pole was 
successfully balanced in five successive trials. (We assumed that 
five successive trials indicated that the systems weights and 
regions had stabilized.) All region weights were initialized to 
zero at the start of each run. 

In the adaptive range coding runs, the updated vertex state 
positions were determined by 3 factors: difference between the 
vertex and the current state, the expected reinforcement, and the 
gain. A Gaussian served as an appropriate decay function to 
modulate vertex movements. Current state to vertex differences 
served as function input parameters. Outputs attenuated with 
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increasing inputs. and the standard deviation 0' of the Gaussian 
shaped the decay function. The magnitude and position of each 
vertex movement were also modulated by the reinforcement ~ (t) 
which moves the vertex towards or away form the current state. 
and by K. a gain parameter. The user definable parameter values 
of K and 0' were initially chosen (arbitrarily) as K = 1 and 0' = 10.0. 
and were used in the following experiments. Parameters were 
not fine tuned or optimized. 

Figure 3 shows the results of the ASE. ASE/ACE. and adaptive 
range coding experiments. The various runs and trials differed 
only in the random number generator seed. Corresponding runs 
and trials using the standard ASE. ASE/ ACE and the adaptive 
range coding algorithm used the same random number seed. All 
other parameters were identical between the two systems. 
However. in adaptive range coding. region boundaries were 
shifted in accordance with [1] during each run. 
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Figure 3: Comparison of the ASE. ASE/ACE. and the 
Adaptive Range Coding Algorithm. 
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We simulated 100 runs of the ASE algorithm with zero successful 
runs. Using the ASE/ACE algorithm, 54 runs were successful. 
With adaptive range coding algorithm, 84 of the 100 runs were 
successful. With O'ase/ace = 4.98 and O'adapt_range_code = 3.66, a 
X 2 test showed the two performance sets to be statistically 
different (p > 0.95). 

Figure 4 shows a comparison of the average performance values 
of the 100 ASE/ACE and Adaptive Range Coding (ARC) runs. Pole 
balancing time is shown as a function of the number of learning 
trials experienced. 
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Figure 4: Comparison of the ASE/ACE and Adaptive 
Range Coding learning rates on the cart pole task. 
Pole balancing time is shown as function of 
learning trials. Results are averaged over 100 runs. 

The disparity between the run times of the two different 
algorithms is due to the comparatively large number of failures 
of the ASE/ ACE system. Statistical analysis indicates no 
significant difference in the learning rates or performance 
levels of the successful runs between categories, leading us to 
believe that adaptive range coding may lead to an "all or none" 
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behavior, and that there is a mInImum area of the state space that 
the system must explore to succeed. 

4 CONCLUSION 

The research has shown that neuron-like elements with 
adjustable regions can dynamically create topological cause and 
effect maps reflecting the control laws of dynamic systems. It is 
anticipated from the results of the examples presented above, that 
adaptive range coding will be more effective than earlier static 
region approaches in the control of complex systems with 
unknown dynamics. 
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