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Abstract 

This is a summary of results with Dyna, a class of architectures for intel­
ligent systems based on approximating dynamic programming methods. 
Dyna architectures integrate trial-and-error (reinforcement) learning and 
execution-time planning into a single process operating alternately on the 
world and on a learned forward model of the world. We describe and 
show results for two Dyna architectures, Dyna-AHC and Dyna-Q. Using a 
navigation task, results are shown for a simple Dyna-AHC system which 
simultaneously learns by trial and error, learns a world model, and plans 
optimal routes using the evolving world model. We show that Dyna-Q 
architectures (based on Watkins's Q-Iearning) are easy to adapt for use in 
changing environments. 

1 Introduction to Dyna 

Dyna architectures (Sutton, 1990) use learning algorithms to approximate the con­
ventional optimal control technique known as dynamic programming (DP) (Bell­
man, 1957; Bertsekas, 1987). DP itself is not a learning method, but rather a 
computational method for determining optimal behavior given a complete model of 
the task to be solved. It is very similar to state-space search, but differs in that 
it is more incremental and never considers actual action sequences explicitly, only 
single actions at a time. This makes DP more amenable to incremental planning 
at execution time, and also makes it more suitable for stochastic or incompletely 
modeled environments, as it need not consider the extremely large number of se­
quences possible in an uncertain environment. Learned world models are likely 
to be stochastic and uncertain, making DP approaches particularly promising for 
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learning systems. Dyna architectures are those that learn a world model online 
while using approximations to DP to learn and plan optimal behavior. 

The theory of Dyna is based on the theory of DP and on DP's relationship to 
reinforcement learning (Watkins, 1989; Barto, Sutton & Watkins, 1989, 1990), to 
temporal-difference learning (Sutton, 1988), and to AI methods for planning and 
search (Korf, 1990). Werb08 (1987) has previously argued for the general idea of 
building AI systems that approximate dynamic programming, and Whitehead & 
Ballard (1989) and others (Sutton & Barto, 1981; Sutton & Pinette, 1985; Rumel­
hart et aI., 1986; Lin, 1991; Riolo, 1991) have presented results for the specific 
idea of augmenting a reinforcement learning system with a world model used for 
planning. 

2 Dyna-AHC: Dyna by Approximating Policy Iteration 

The Dyna-AHC architecture is based on approximating a DP method known as 
policy iteration (see Bertsekas, 1987). It consists of four components interacting as 
shown in Figure 1. The policy is simply the function formed by the current set of 
reactions; it receives as input a description of the current state of the world and 
produces as output an action to be sent to the world. The world represents the 
task to be solved; prototypically it is the robot's external environment. The world 
receives actions from the policy and produces a next state output and a reward 
output. The overall task is defined as maximizing the long-term average reward 
per time step. The architecture also includes an explicit world model. The world 
model is intended to mimic the one-step input-output behavior of the real world. 
Finally, the Dyna-AHC architecture includes an evaluation function that rapidly 
maps states to values, much as the policy rapidly maps states to actions. The 
evaluation function, the policy, and the world model are each updated by separate 
learning processes. 

The policy is continually modified by an integrated planning/learning process. The 
policy is, in a sense, a plan, but one that is completely conditioned by current input. 
The planning process is incremental and can be interrupted and resumed at any 
time. It consists of a series of shallow seaches, each typically of one ply, and yet 
ultimately produces the same result as an arbitrarily deep conventional search. I 
call this relaxation planning. 

Relaxation planning is based on continually adjusting the evaluation function in 
such a way that credit is propagated to the appropriate steps within action se­
quences. Generally speaking, the evaluation e(x) of a state x should be equal to 
the best of the states y that can be reached from it in one action, taking into 
consideration the reward (or cost) r for that one transition: 

e(x) "=" m~ E {r + e(y) I x, a}, 
aEActlon. 

(1) 

where E {. I .} denotes a conditional expected value and the equal sign is quoted to 
indicate that this is a condition that we would like to hold, not one that necessarily 
does hold. If we have a complete model of the world, then the right-hand side can 
be computed by looking ahead one action. Thus we can generate any number of 
training examples for the process that learns the evaluation function: for any x, 



Integrated Modeling and Control Based on Reinforcement Learning 473 

(r EVALUATION 1 
FUNCTION J~---' Heuristic " ~ Reward 

(scalar) 

r 
POLICY Reward 

(scalar) " ~ 
State 

Action 

WORLD 

OR ~ 

"WORLD MODEL) /sWITCH 

Figure 1. Overview of Dyna-AHC 

1. Decide if this will be a real experience 
or a hypothetical one. 

2. Pick a state z. If this is a real expe­
rience, use the current state. 

3. Choose an action: a +- Policy(z) 
4. Do action a; obtain next state y and 

reward r from world or world model. 
5. If this is a real experience, update 

world model from z, a, y and r. 
6. Update evaluation function so that 

e(z) is more like r + re(y); this is 
temporal-difference learning. 

7. Update policy-strengthen or weaken 
the tendency to perform action a in 
state z according to the error in the 
evaluation function: r + re(y) - e( z) . 

8. Go to Step 1. 

Figure 2. Inner Loop of Dyna-AHC. 
These steps are repeatedly continually, 
sometimes with real experiences, some­
times with hypothetical ones. 

the right-hand side of (1) is the desired output. If the learning process converges 
such that (1) holds in all states, then the optimal policy is given by choosing the 
action in each state z that achieves the maximum on the right-hand side. There is an 
extensive theoretical basis from dynamic programming for algorithms of this type for 
the special case in which the evaluation function is tabular, with enumerable states 
and actions. For example, this theory guarantees convergence to a unique evaluation 
function satisfying (1) and that the corresponding policy is optimal (Bertsekas, 
1987). 

The evaluation function and policy need not be tables, but can be more compact 
function approximators such as connectionist networks, decision trees, k-d trees, 
or symbolic rules. Although the existing theory does not apply to these machine 
learning algorithms directly, it does provide a theoretical foundation for exploring 
their use in this way. 

The above discussion gives the general idea of relaxation planning, but not the ex­
act form used in policy iteration and Dyna-AHC, in which the policy is adapted 
simultaneously with the evaluation function. The evaluations in this case are not 
supposed to reflect the value of states given optimal behavior, but rather their 
value given current behavior (the current policy). As the current policy gradually 
approaches optimality, the evaluation function also approaches the optimal evalua­
tion function. In addition, Dyna-AHC is a Monte Carlo or stochastic approximation 
variant of policy iteration, in which the world model is only sampled, not examined 
directly. Since the real world can also be sampled, by actually taking actions and 
observing the result, the world can be used in place of the world model in these 
methods. In this case, the result is not relaxation planning, but a trial-and-error 
learning process much like reinforcement learning (see Barto, Sutton & Watkins, 
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Figure 3. Learning Curves of Dyna­
AIIC Systems on a Navigation Task 
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Figure 4. Policies Found by Planning 
and Non-Planning Dyna-AHC Systems 
by the Middle of the Second Trial. The 
black square is the current location of 
the system. The arrows indicate action 
probabilities (excess over smallest) for 
each direction of movement. 

1989, 1990). In Dyna-AHC, both of these are done at once. The same algorithm is 
applied both to real experience (resulting in learning) and to hypothetical experi­
ence generated by the world model (resulting in relaxation planning). The results 
in both cases are accumulated in the policy and the evaluation function. 

There is insufficient room here to fully justify the algorithm used in Dyna-AHC, 
but it is quite simple and is given in outline form in Figure 2. 

3 A Navigation Task 

As an illustration of the Dyna-AHC architecture, consider the task of navigating 
the maze shown in the upper right of Figure 3. The maze is a 6 by 9 grid of 
possible locations or states, one of which is marked as the starting state, "S", and 
one of which is marked as the goal state, "G". The shaded states act as barriers and 
cannot be entered. All the other states are distinct and completely distinguishable. 
From each there are four possible actions: UP, DOWN, RIGHT, and LEFT, which 
change the state accordingly, except where such a movement would take the take 
the system into a barrier or outside the maze, in which case the location is not 
changed. Reward is zero for all transitions except for those into the goal state, for 
which it is +1. Upon entering the goal state, the system is instantly transported 
back to the start state to begin the next trial. None of this structure and dynamics 
is known to the Dyna-AHC system a priori. 

In this instance of the Dyna-AHC architecture, real and hypothetical experiences 
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were used alternately (Step 1). For each single experience with the real world, k 
hypothetical experiences were generated with the model. Figure 3 shows learning 
curves for k = 0, k = 10, and k = 100, each an average over 100 runs. The k = 0 
case involves no planning; this is a pure trial-and-error learning system entirely 
analogous to those used in reinforcement learning systems based on the adaptive 
heuristic critic (AHC) (Sutton, 1984; Barto, Sutton & Anderson, 1983). Although 
the length of path taken from start to goal falls dramatically for this case, it falls 
much more rapidly for the cases including hypothetical experiences, showing the 
benefit of relaxation planning using the learned world model. For k = 100, the 
optimal path was generally found and followed by the fourth trip from start to goal; 
this is very rapid learning. 

Figure 4 shows why a Dyna-AHC system that includes planning solves this problem 
so much faster than one that does not. Shown are the policies found by the k == 0 and 
k = 100 Dyna-AHC systems half-way through the second trial. Without planning 
(k = 0), each trial adds only one additional step to the policy, and so only one step 
(the last) has been learned so far. With planning, the first trial also learned only 
one step, but here during the second trial an extensive policy has been developed 
that by the trial's end will reach almost back to the start state. 

4 Dyna-Q: Dyna by Q-learning 

The Dyna-AHC architecture is in essence the reinforcement learning architecture 
based on the adaptive heuristic critic (AHC) that my colleagues and I developed 
(Sutton, 1984; Barto, Sutton & Anderson, 1983) plus the idea of using a learned 
world model to generate hypothetical experience and to plan. Watkins (1989) sub­
sequently developed the relationships between the reinforcement-learning architec­
ture and dynamic programming (see also Barto, Sutton & Watkins, 1989, 1990) 
and, moreover, proposed a slightly different kind of reinforcement learning called 
Q-learning. The Dyna- Q architecture is the combination of this new kind of learn­
ing with the Dyna idea of using a learned world model to generate hypothetical 
experience and achieve planning. 

Whereas the AHC reinforcement learning architecture maintains two fundamental 
memory structures, the evaluation function and the policy, Q-Iearning maintains 
only one. That one is a cross between an evaluation function and a policy. For each 
pair of state x and action a, Q-Iearning maintains an estimate Qra of the value of 
taking a in x. The value of a state can then be defined as the value of the state's 
best state-action pair: e(x) deC maXa Qra. In general, the Q-value for a state x and 
an action a should equal the expected value of the immediate reward r plus the 
discounted value of the next state y: 

Qra "=" E{r+-ye(y)lx,a}. (3) 

To achieve this goal, the updating steps (Steps 6 and 7 of Figure 2) are implemented 
by 

Qra +- Qra + f3(r + -ye(y) - Qra). (4) 
This is the only update rule in Q-Iearning. We note that it is very similar though 
not identical to Holland's bucket brigade and to Sutton's (1988) temporal-difference 
learning. 
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The simplest way of determining the policy on real experiences is to deterministically 
select the action that currently looks best-the action with the maximal Q-value. 
However, as we show below, this approach alone suffers from inadequate exploration. 
To deal with this problem, a new memory structure was added that keeps track of 
the degree of uncertainty about each component of the model. For each state x and 
action a, a record is kept of the number of time steps nXIl that have elapsed since a 
was tried in z in a real experience. An exploration bonus of fVnxll is used to make 
actions that have not been tried in a long time (and that therefore have uncertain 
consequences) appear more attractive by replacing (4) with: 

QXIl +- QXIl + f3(r + fVnxll + ')'e(y) - QXIl)' (5) 

In addition, the system is permitted to hypothetically experience actions is has 
never before tried, so that the exploration bonus for trying them can be propagated 
back by relaxation planning. This was done by starting the system with a non­
empty initial model and by selecting actions randomly on hypothetical experiences. 
In the experiments with Dyna-Q systems reported below, actions that had never 
been tried were assumed to produce zero reward and leave the state unchanged. 

5 Changing-World Experiments 

Two experiments were performed to test the ability of Dyna systems to adapt to 
changes in their environments. Three Dyna systems were used: the Dyna-AHC 
system presented earlier in the paper, a Dyna-Q system including the exploration 
bonus (5), called the Dyna-Q+ system, and a Dyna-Q system without the explo­
ration bonus (4), called the Dyna-Q- system. All systems used k = 10. 

The blocking experiment used the two mazes shown in the upper portion of Figure 
5. Initially a short path from start to goal was available (first maze). After 1000 
time steps, by which time the short path was usually well learned, that path was 
blocked and a longer path was opened (second maze). Performance under the new 
condition was measured for 2000 time steps. Average results over 50 runs are shown 
in Figure 5 for the three Dyna systems. The graph shows a cumulative record of 
the number of rewards received by the system up to each moment in time. In the 
first 1000 trials, all three Dyna systems found a short route to the goal, though the 
Dyna-Q+ system did so significantly faster than the other two. After the short path 
was blocked at 1000 steps, the graph for the Dyna-AHC system remains almost flat, 
indicating that it was unable to obtain further rewards. The Dyna-Q systems, on 
the other hand, clearly solved the blocking problem, reliably finding the alternate 
path after about 800 time steps. 

The shortcut experiment began with only a long path available (first maze of Figure 
6). After 3000 times steps all three Dyna systems had learned the long path, and 
then a shortcut was opened without interferring with the long path (second maze of 
Figure 6). The lower part of Figure 6 shows the results. The increase in the slope 
of the curve for the Dyna-Q+ system, while the others remain constant, indicates 
that it alone was able to find the shortcut. The Dyna-Q+ system also learned 
the original long route faster than the Dyna-Q- system, which in turn learned it 
faster than the Dyna-AHC system. However, the ability of the Dyna-Q+ system 
to find shortcuts does not come totally for free . Continually re-exploring the world 
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means occasionally making suboptimal actions. If one looks closely at Figure 6, 
one can see that the Dyna-Q+ system actually acheives a slightly lower rate of 
reinforcement during the first 3000 steps. In a static environment, Dyna-Q+ will 
eventually perform worse than Dyna-Q-, whereas, in a changing environment, it 
will be far superior, as here. One possibility is to use a meta-level learning process 
to adjust the exploration parameter f to match the degree of variability of the 
environment. 

6 Limitations and Conclusions 

The results presented here are clearly limited in many ways. The state and action 
spaces are small and denumerable, permitting tables to be used for all learning pro­
cesses and making it feasible for the entire state space to be explicitly explored. In 
addition, these results have assumed knowledge of the world state, have used a triv­
ial form of search control (random exploration), and have used terminal goal states. 
These are significant limitations of the results, but not of the Dyna architecture. 
There is nothing about the Dyna architecture which prevents it from being applied 
more generally in each of these ways (e.g., see Lin, 1991; Riolo, 1991; Whitehead & 
Ballard, in press). 

Despite limitations, these results are significant. They show that the use of a for­
ward model can dramatically speed trial-and-error (reinforcement) learning pro­
cesses even on simple problems. Moreover, they show how planning can be done 
with the incomplete, changing, and of times incorrect world models that are con­
tructed through learning. Finally, they show how the functionality of planning can 
be obtained in a completely incremental manner, and how a planning process can be 
freely intermixed with reaction and learning processes. Further results are needed 
for a thorough comparison of Dyna-AHC and Dyna-Q architectures, but the results 
presented here suggest that it is easier to adapt Dyna-Q architectures to changing 
environments. 
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