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Abstract 

A novel learning control architecture is used for navigation. A sophisti­
cated test-bed is used to simulate a cylindrical robot with a sonar belt 
in a planar environment. The task is short-range homing in the pres­
ence of obstacles. The robot receives no global information and assumes 
no comprehensive world model. Instead the robot receives only sensory 
information which is inherently limited. A connectionist architecture is 
presented which incorporates a large amount of a priori knowledge in the 
form of hard-wired networks, architectural constraints, and initial weights. 
Instead of hard-wiring static potential fields from object models, myarchi­
tecture learns sensor-based potential fields, automatically adjusting them 
to avoid local minima and to produce efficient homing trajectories. It does 
this without object models using only sensory information. This research 
demonstrates the use of a large modular architecture on a difficult task. 

1 OVERVIEW 

I present a connectionist learning control architecture tailored for simulated short­
range homing in the presence of obstacles. The kinematics of a cylindrical robot 
(shown in Figure 1) moving in a planar environment is simulated. The robot has 
wheels that propel it independently and simultaneously in both the x and y direc­
tions with respect to a fixed orientation. It can move up to one radius per discrete 
time step. The robot has a 360 degree sensor belt with 16 distance sensors and 
16 grey-scale sensors evenly placed around its perimeter. These 32 values form the 
robot's view. 

Figure 2 is a display created by the navigation simulator. The bottom portion of 
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Figure 1: Simulated robot. 

Figure 2: Navigation simulator. 

the figure shows a bird's-eye view of the robot's environment. In this display, the 
bold circle represents the robot's uhome" position, with the radius line indicating 
the home orientation. The other circle with radius line reprelent. the robot's cur­
rent position and orientation. The top panel shows the grey-scale view from the 
home position, and the next panel down shows the grey-scale view from the robot's 
current position. For better viewing, the distance and grey-scale sensor values are 
superimposed, and the height of the profile is 1/distance instead of distance. Thus 
as the robot gets closer to objects they get taller, and when the robot gets farther 
away from objects they get shorter in the display. 

The robot cannot move through nor usee" through obstacles (i.e., obstacles are 
opaque). The task is for the robot to align itself with the home position from 
arbitrary starting positions in the environment while not colliding with obstacles. 
This task is performed using only the sensory information-the robot does not have 
access to the bird's-eye view. 

This is a difficult control task. The sensory information forms a high-dimensional 
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Figure 3: The potential field method. This figure shows a contour plot of a terrain 
created using potential fields generated from object models. The contour diagram 
shows level curves where the grey level of the line depicts the height of the line: the 
maximum height is depicted in black, and the minimum height is depicted in white. 

continuous space, and successful homing generally requires a nonlinear mapping 
from this space to the space of real-valued actions. Further, training networks 
is not easily achieved on this space. The robot assumes no comprehensive world 
model and receives no global information, but receives only sensory information 
that is inherently limited. Furthermore, it is difficult to reach home using random 
exploration thereby making simple trial-and-error learning intractable. In order to 
handle this task an architecture was designed that facilitates the coding of domain 
knowledge in the form of hard-wired networks, architectural constraints, and initial 
weights. 

1.1 POTENTIAL FIELDS 

Before I describe the architecture, I briefly discuss a more traditional technique for 
navigation that uses potential fields. This technique involves building explicit object 
model. repre.enting the extent and position of object. in the robot'. environment. 
Repelling potential fields are then placed around obstacle. using the object models, 
and an attracting potential field is placed on the goal. This can be visualized as 
a terrain where the global minimum is located at the goal, and where there are 
bumps around the obstacles. The robot goes home by descending the terrain. The 
contour diagram in Figure 3 shows such a terrain. The task is to go from the top 
room to the bottom through the door. Unfortunately, there can be local minima. 
In this environment there are two prime examples of minima: the right-hand wall 
between the home location and the upper room-opposing forces exactly counteract 
each other to produce a local minimum in the right-hand side of the upper room, 
and the doorway-the repelling fields on the door frame create an insurmountable 
bump in the center of the door. 

In contrast, my technique learns a sensor-based potential field model. Instead of 
hard-wiring static potential fields from the object models, the proposed architecture 
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Figure 4: Control architectures. 

learns potential fields, automatically adjusting them to both avoid local minima 
and produce efficient trajectories. Furthermore, it does this without object models, 
using only sensory information. 

1.2 2-NET /3-NET ARCHITECTURES 

I shall begin by introducing two existing architectures: the 2-net and 3-net architec­
tures. These architectures were proposed by Werbos [9] and Jordan and Jacobs [4] 
and are also based on the ideas of Barto, Sutton, Watkins [2, 1, 8], and Jordan 
and Rumelhart [3]. The basic idea is to learn an evaluation function and then 
train the controller by differentiating this function with respect to the controller 
weights. These derivatives indicate how to change the controller's weights in order 
to minimize or maximize the evaluation function. The 2-net architecture consists 
of a controller and a critic. The controller maps states to actions, and the 2-net 
critic maps state/action pairs to evaluations. The 3-net architecture consists of a 
controller, a forward model, and a critic. The controller maps states to actions, the 
forward model maps state/action pairs to next states, and the 3-net critic maps 
states to evaluations. 

It has been said that it is easier to train a 2-net architecture because there is no 
forward model [5]. The forward model might be very complicated and difficult to 
train. With a 2-net architecture, only a 2-net critic is trained based on state/action 
input pairs. But what if a forward model already exists or even a priori knowledge 
exists to aid in explicit coding of a forward model? Then it might be simpler to 
use the 3-net architecture because the 3-net critic would be easier to train. It is 
based on state-only input and not state/action pairs, and it includes more domain 
knowledge. 
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Figure 5: My architecture. 

2 THE NAVIGATION ARCHITECTURE 

The navigation architecture is a version of a 3-net architecture tailored for naviga­
tion, where the state is the robot's view and the evaluation is an estimate of the 
length of the shortest path for the robot's current location to home. It consists of a 
controller, a forward model, and two adaptive critics. The controller maps views to 
actions, the forward model maps view/action pairs to next views, the homing critic 
maps views to path length home using a straight line trajectory, and the obstacle 
avoidance critic maps views to additional path length needed to avoid obstacles. The 
sum of the outputs of the homing critic and the obstacle avoidance critic equals the 
total path length home. The forward model is a hard-wired differentiable network 
incorporating geometrical knowledge about the sensors and space. Both critics and 
the controller are radial basis networks using Gaussian hidden units. 

2.1 TRAINING 

Initially the controller is trained to produce straight-line trajectories home. With 
the forward model fixed, the homing critic and the controller are trained using dead­
reckoning. Dead-reckoning is a technique for keeping track of the distance home 
by accumulating the incremental displacements. This distance provides a training 
signal for training the homing critic via supervised learning. 

Next, the controller is further trained to avoid obstacles. In this phase, the obstacle 
avoidance critic is added while the weights of the homing critic and forward model 
are frozen. Using the method of temporal differences [7] the controller and obstacle 
avoidance qitic are adjusted so that the expected path length decreases by one 
radius per time step. After training, the robot takes successive one-radius steps 
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Figure 6: An example. 

toward its home location. 

3 AN EXAMPLE 

I applied this architecture to the environment shown in Figure 2. Figure 6 shows 
the results of training. The left panel is a contour plot of the output of the homing 
critic and reflects only the straight-line distance to the home location. The right 
panel is a contour plot of the combined output of the homing critic and the obstacle 
avoidance critic and now reflects the actual path length home. After training the 
robot is able to form efficient homing trajectories starting from anywhere in the 
environment. 

4 DISCUSSION 

The homing task represents a difficult control task requiring the solution of a number 
of problems. The first problem is that there is a small chance of getting home using 
random exploration. The solution to this problem involves building a nominal initial 
controller that chooses straight-line trajectories home. Next, because the state 
space is high-dimensional and continuous it is impractical to evenly place Gaussian 
units, and it is difficult to learn continuous mappings using logistic hidden units. 
Instead I use Gaussian units whose initial weights are determined using expectation 
maximization. This is a soft form of competitive learning [6] that, in my case, 
creates spatially tuned units. Next, the forward model for the robot's environments 
is very difficult to learn. For this reason I used a hard-wired forward model whose 
performance is good in a wide range of environments. Here the philosophy is to 
learn only things that are difficult to hard-wire. Finally, the 2-net critic is difficult 
to train. Therefore, I split the 2-net critic into a 3-net critic and a hard-wired 
forward model. 

There are many directions for extending this work. First, I would like to apply this 
architecture to real robots using realistic sensors and dynamics. Secondly, I want to 



A Connectionist Learning Control Architecture for Navigation 463 

to look at long range homing. Lastly, I would like to investigate navigation tasks 
involving multiple goals. 
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