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Abstract 

Given some training data how should we choose a particular network clas­
sifier from a family of networks of different complexities? In this paper 
we discuss how the application of stochastic complexity theory to classifier 
design problems can provide some insights into this problem. In particular 
we introduce the notion of admissible models whereby the complexity of 
models under consideration is affected by (among other factors) the class 
entropy, the amount of training data, and our prior belief. In particular 
we discuss the implications of these results with respect to neural architec­
tures and demonstrate the approach on real data from a medical diagnosis 
task. 

1 Introduction and Motivation 

In this paper we examine in a general sense the application of Minimum Description 
Length (MDL) techniques to the problem of selecting a good classifier from a large 
set of candidate models or hypotheses. Pattern recognition algorithms differ from 
more conventional statistical modeling techniques in the sense that they typically 
choose from a very large number of candidate models to describe the available data. 
Hence, the problem of searching through this set of candidate models is frequently 
a formidable one, often approached in practice by the use of greedy algorithms. In 
this context, techniques which allow us to eliminate portions of the hypothesis space 
are of considerable interest. We will show in this paper that it is possible to use the 
intrinsic structure of the MDL formalism to eliminate large numbers of candidate 
models given only minimal information about the data. Our results depend on the 
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very simple notion that models which are obviously too complex for the problem 
(e.g., models whose complexity exceeds that of the data itself) can be discarded 
from further consideration in the search for the most parsimonious model. 

2 Background on Stochastic Complexity Theory 

2.1 General Principles 

Stochastic complexity prescribes a general theory of inductive inference from data, 
which, unlike more traditional inference techniques, takes into account the com­
plexity of the proposed model in addition to the standard goodness-of-fit of the 
model to the data. For a detailed rationale the reader is referred to the work of 
Rissanen (1984) or Wallace and Freeman (1987) and the references therein. Note 
that the Minimum Description Length (MDL) technique (as Rissanen's approach 
has become known) is implicitly related to Maximum A Posteriori (MAP) Bayesian 
estimation techniques if cast in the appropriate framework. 

2.2 Minimum Description Length and Stochastic Complexity 

Following the notation of Barron and Cover (1991), we have N data-points, de­
scribed as a sequence of tuples of observations {xI, ... , xf , Yi}, 1 ::; i ::; N, to be 
referred to as {xi,yd for short. The xf correspond to values taken on by the f{ 
random variables X k (which may be continuous or discrete), while , for the purposes 
of this paper, the Yi are elements of the finite alphabet of the discrete m-ary class 
variable Y. Let rN = {M l , ... , MlrNI} be the family of candidate models under 
consideration. Note that by defining r N as a function of N, the number of data 
points, we allow the possibility of considering more complicated models as more 
data arrives. For each Mj ErN let C( Mj) be non-negative numbers such that 

L 2-C(Mj) ::; l. 

j 

The C(Mj) can be interpreted as the cost in bits of specifying model Mj - in turn, 
2-C(Mj) is the prior probability assigned to model M j (suitably normalized). Let 
us use C = {C(Mt}, ... , C(M1rNln to refer to a particular coding scheme for rN . 

Hence the total description length of the data plus a model Mj is defined as 

L(Mj, {Xi , yd) = C(Mj) + log (p( {Ydl~j( {~lJ))) 
i.e., we first describe the model and then the class data relative to the given model 
(as a function of {xd, the feature data). The stochastic complexity of the dat.a 
{Xi, Yi} relative to Cand r N is the minimum description length 

I( {Xi, yd) = min {L(M}", {Xi, yd n· 
- MjErN -

The problem of finding the model of shortest description length is intractable in 
the general case - nonetheless the idea of finding the best model we can is well 
motivated, works well in practice and is far preferable to the alternative approach 
of ignoring the complexity issue entirely. 
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3 Admissible Stochastic Complexity Models 

3.1 Definition of Admissibility 

We will find it useful to define the notion of an admissible model for the classification 
problem: the set of admissible models ON (~ r N ) is defined as all models whose 
complexity is such that there exists no other model whose description length is 
known to be smaller. In other words we are saying that inadmissible models are 
those which have complex~ty in bits greater than any known description length -
clearly they cannot be better than the best known model in terms of description 
length and can be eliminated from consideration. Hence, ON is defined dynamically 
and is a function of how many description lengths we have already calculated in our 
search. Typically r N may be pre-defined, such as the class of all 3-layer feed-forward 
neural networks with particular activation functions . We would like to restrict our 
search for a good model to the set ON ~ rN as far as possible (since non-admissible 
models are of no practical use). In practice it may be difficult to determine the 
exact boundaries of ON, particularly when Ir N I is large (with decision trees or 
neural networks for example). Note that the notion of admissibility described here 
is particularly useful when we seek a minimal description length, or equivalently a 
model of maximal a posteriori probability - in situations where one's goal is to 
average over a number of possible models (in a Bayesian manner) a modification of 
the admissibility criterion would be necessary. 

3.2 Results for Admissible Models 

Simple techniques for eliminating obvious non-admissible models are of interest : for 
the classification problem a necessary condition that a model M j be admissible is 
that 

C(Mj) ~ N· H(X) ~ Nlog(m) 

where H(X) is the entropy ofthe m-ary class variable X. The obvious interpretation 
in words is that any admissible model must have complexity less than that of the 
data itself. It is easy to show in addition that the complexity of any admissible 
model is upper bounded by the parameters of the classification problem: 

Hence, the size of the space of admissible models can also be bounded: 

Our approach suggests that for classification at least, once we know N and the 
number of classes m, there are strict limitations on how many admissible models we 
can consider. Of course the theory does not state that considering a larger subset 
will necessarily result in a less optimal model being found, however, it is difficult to 
argue the case for including large numbers of models which are clearly too complex 
for the problem. At best, such an approach will lead to an inefficient search, whereas 
at worst a very poor model will be chosen perhaps as a result of the use of a poor 
coding scheme for the unnecessarily large hypothesis space. 
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3.3 Admissible Models and Bayes Risk 

The notion of minimal compression (the minimum achievable goodness-of-fit) is 
intimately related in the classification problem to the minimal Bayes risk for the 
problem (Kovalevsky, 1980). Let MB be any model (not necessarily unique) which 
achieves the optimal Bayes risk (i.e., minimizes the classifier error) for the classi­
fication problem. In particular, C( {xdIMB( {yd)) is not necessarily zero, indeed 
in most practical problems of interest it is non-zero, due to the ambiguity in the 
mapping from the feature space to the class variable. In addition, MB may not be 
defined in the set r N, and hence, MB need not even be admissible. If, in the limit 
as N -+ 00, MB rt. roo then there is a fundamental approximation error in the rep­
resentation being used, i.e., the family of models under consideration is not flexible 
enough to optimally represent the mapping from {xd to {yd. Smyth (1991) has 
shown how information about the Bayes error rateror the problem (if available) 
can be used to further tighten the bounds on admissibility. 

4 Applying Mininlum Description Length Principles to 
Neural Network Design 

In principle the admissibility results can be applied to a variety of classifier design 
problems - applications to Markov model selection and decision tree design are 
described elsewhere (Smyth, 1991). In this paper we limit our attention to the 
problem of automatically selecting a feedforward multi-layer network architecture. 

4.1 Calculation of the Goodness-of-Fit 

As is clear from the preceding discussion, application of the MDL principle to clas­
sifier selection requires that the classifier produce a posterior probability estimate of 
the class labels. In the context of a network model this is not a problem provided the 
network is trained to provide such estimates. This requires a simple modification 
of the objective function to a log-likelihood function - L~llog(p(ydxd), where Yi 
is the class label of the ith training datum and pO is the network's estimate of pO. 
This function has been proposed in the literature in the past under the guise of a 
cross-entropy measure (for the special case of binary classes) and more recently it 
has been derived from the more basic arguments of Minimum Mutual Information 
(MMI) (Bridle, 1990) and Maximum Likelihood (ML) Estimation (Gish, 1990). The 
cross-entropy function for network training is nothing more that the goodness-of-fit 
component of the description length criterion. Hence, both MMI and ML (since 
they are equivalent in this case) are special cases of the MDL procedure wherein 
the complexity term is a constant and is left out of the optimization (all models are 
assumed to be equally likely and likelihood alone is used as the decision criterion). 

4.2 Complexity Penalization for Multi-layer Perceptron Models 

It has been proposed in the past (Barron, 1989) to use a penalty term of (k/2) log N, 
where k is the number of parameters (weights and biases) in the network. The ori­
gins of this complexity measure lie in general arguments originally proposed by 
Rissanen (1984). However this penalty term is too large. Cybenko (1990) has 
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pointed out that existing successful applications of networks have far more param­
eters than could possibly be justified by a statistical analysis, given the amount of 
training data used to construct the network. The critical factor lies in the precision 
to which these parameters are stated in the final model. In essence the principle 
of MDL (and Bayesian techniques) dictates that the data only justifies the stating 
of any parameter in the model to some finite precision, inversely proportional to 
the inherent variance of the estimate. Approximate techniques for the calculation 
of the complexity terms in this manner have been proposed (Weigend, Huberman 
and Rumelhart, this volume) but a complete description length analysis has not yet 
appeared in the literature. 

4.3 Complexity Penalization for a Discrete Network Model 

It turns out that there are alternatives to multi-layer perceptrons whose complexity 
is much easier to calculate. We will look in particular at the rule-based network 
of Goodman et al. (1990). In this model the hidden units correspond to Boolean 
combinations of discrete input variables. The link weights from hidden to output 
(class) nodes are proportional to log conditional probabilities of the class given the 
activation of a hidden node. The output nodes form estimates of the posterior class 
probabilities by a simple summation followed by a normalization. The implicit 
assumption of conditional independence is ameliorated in practice by the fact that 
the hidden units are chosen in a manner to ensure that the assumption is violated 
as little as possible. 

The complexity penalty for the network is calculated as being (1/2) log N per link 
from the hidden to output layers, plus an appropriate coding term for the specifica­
tion of the hidden units. Hence, the description length of a network with k hidden 
units would be 

N k 

L = - L log(p(Ydx;)) + k /2 log N - L log 11"( od 
i=1 i=1 

where 0i is the order of the ith hidden node and 11"( OJ) is a prior probability on the 
orders. Using this definition of description length we get from our earlier results 
on admissible models that the number of hidden units in the architecture is upper 
bounded by 

k < NH(C) 
- 0.51ogN + logJ< + 1 

where J< is the number of binary input attributes. 

4.4 Application to a Medical Diagnosis Problem 

We consider the application of our techniques to the discovery of a parsimonious 
network for breast cancer diagnosis, using the discrete network model. A common 
technique in breast cancer diagnosis is to obtain a fine needle aspirate (FNA) from 
the patient. The FN A sample is then evaluated under a microscope by a physician 
who makes a diagnosis. Ground truth in the form of binary class labels ("benign" 
or "malignant") is obtained by re-examination or biopsy at a later stage. Wolberg 
and Mangasarian (1991) described the collection of a database of such information. 
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The feature information consisted of subjective evaluations of nine FNA sample 
characteristics such as uniformity of cell size, marginal adhesion and mitoses. The 
training data consists of 439 such FNA samples obtained from real patients which 
were later assigned class labels. Given that the prior class entropy is almost 1 bit , 
one can immediately state from our bounds that networks with more than 51 hidden 
units are inadmissible. Furthermore, as we evaluate different models we can narrow 
the region of admissibility using the results stated earlier. Figure 1 gives a graphical 
interpretation of this procedure. 
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Figure 1. Inadmissible region as a function of description length 

The algorithm effectively moves up the left-hand axis, adding hidden units in a 
greedy manner. Initially the description length (the lower curve) decreases rapidly 
as we capture the gross structure in the data. For each model that we calculate a 
description length, we can in turn calculate an upper bound on admissibility (the 
upper curve) - this bound is linear in description length. Hence , for example by 
the time we have 5 hidden units we know that any models with more than 21 hidden 
units are inadmissible. Finally a local minimum of the description length function 
is reached at 12 units, at which point we know that the optimal solution can have at 
most 16 hidden units . As matter of interest, the resulting network with 12 hidden 
units correctly classified 94 of 96 independent test cases. 

5 Conclusion 

There are a variety of related issues which arise in this context which we can only 
briefly mention due to space constraints. For example, how does the prior "model 
entropy", H(ON) = - Li p(l\1i) log(p(l\1d) , affect the complexity of the search 
problem? Questions also naturally arise as to how ON should grow as a function of 
N in an incrementa/learning scenario. 

In conclusion, it should not be construed from this paper that consideration of 
admissible models is the major factor in inductive inference - certainly the choice 
of description lengths for the various models and the use of efficient optimization 
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techniques for seeking the parameters of each model remain the cornerstones of 
success. Nonetheless, our results provide useful theoretical insight and are practical 
to the extent that they provide a "sanity check" for model selection in MDL. 
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