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Empirically, generalization between a training and a test stimulus falls off in 
close approximation to an exponential decay function of distance between the 
two stimuli in the "stimulus space" obtained by multidimensional scaling. Math­
ematically, this result is derivable from the assumption that an individual takes 
the training stimulus to belong to a "consequential" region that includes that 
stimulus but is otherwise of unknown location, size, and shape in the stimulus 
space (Shepard, 1987). As the individual gains additional information about the 
consequential region-by finding other stimuli to be consequential or nOl-the 
theory predicts the shape of the generalization function to change toward the 
function relating actual probability of the consequence to location in the stimulus 
space. This paper describes a natural connectionist implementation of the theory, 
and illustrates how implications of the theory for generalization, discrimination, 
and classification learning can be explored by connectionist simulation. 

1 THE THEORY OF GENERALIZATION 

Because we never confront exactly the same situation twice, anything we have learned in 
any previous situation can guide us in deciding which action to take in the present situation 
only to the extent that the similarity between the two situations is sufficient to justify 
generalization of our previous learning to the present situation. Accordingly, principles of 
generalization must be foundational for any theory of behavior. 

In Shepard (1987) nonarbitrary principles of generalization were sought that would be 
optimum in any world in which an object, however distinct from other objects, is generally 
a member of some class or natural kind sharing some dispositional property of potential 
consequence for the individual. A newly encountered plant or animal might be edible or 
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poisonous. for example. depending on the hidden genetic makeup of its natural kind. 

This simple idea was shown to yield a quantitative explanation of two very general empirical 
regularities that emerge when generalization date are submitted to methods of multidimen­
sional scaling. The first concerns the shape of the generalization gradient. which describes 
how response probability falls off with distance of a test stimulus from the training stimulus 
in the obtained representational space. The second. which is not treated in the present 
(unidimensional) connectionist implementation. concerns the metric of multidimensional 
representational spaces. (See Shepard. 1987.) 

These results were mathematically derived for the simplest case of an individual who. in 
the absence of any advance knowledge about particular objects, now encounters one such 
object and discovers it to have an important consequence. From such a learning event. 
the individual can conclude that all objects are consequential that are of the same kind 
as that object and that therefore fall in some consequential region that overlaps the point 
corresponding to that object in representational space. The individual can only estimate the 
probability that a given new object is consequential as the conditional probability. given 
that a region of unknown size and shape overlaps that point. that it also overlaps the point 
corresponding to the new object. The gradient of generalization then arises because a new 
object that is closer to the old object in the representational space is more likely to fall 
within a random region that overlaps the old object. 

In order to obtain a quantitative estimate of the probability that the new stimulus is con­
sequential. the individual must integrate over all candidate regions in representational 
space--with. perhaps. different probabilities assigned. a priori. to different sizes and shapes 
of region. The results tum out to depend remarkably little on the prior probabilities assigned 
(Shepard. 1987). For any reasonable choice of these probabilities. integration yields an 
approximately exponential gradient. And. for the single most reasonable choice in the 
absence of any advance information about size or shape. namely. the choice of maximum 
entropy prior probabilities, integration yields exactly the exponential decay function. 

These results were obtained by separating the psychological problem of the form of gener­
alization in a psychological space from the psychophysical problem of the mapping from 
any physical parameter space to that psychological space. The psychophysical mapping, 
having been shaped by natural selection. would favor a representational space in which 
regions that correspond to natural kinds. though variously sized and shaped. are not on 
average systematically elogated or compressed in any particular direction or location of 
the space. Such a regularized space would provide the best basis for generalization from 
objects of newly encountered kinds. 

The psychophysical mapping thus corresponds to an optimum mapping from input to hidden 
units in a connectionist system. Indeed. Rumelhart (1990) has recently suggested that the 
power of the connectionist approach comes from the ability of a set of hidden units to 
represent the relations among possible inputs according to their significances for the system 
as a whole rather than according to their superficial relations at the input level. Although in 
biologically evolved individuals the psychophysical mapping is likely to have been shaped 
more through evolution than through learning (Shepard. 1989; see also Miller & Todd, 
1990) the connectionist implementation to be described here does provide for some fine 
tuning of this mapping through learning. 

Beyond the exponential form of the gradient of generalization following training on a 
single stimulus. three basic phenomena of discrimination and classification learning that 
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the theory of generalization should be able to explain are the following: First, when all 
and only the stimuli within a compact subset are followed by an important consequence 
(reinforcement), an individual should eventually learn to respond to all and only the stimuli 
in that subset (Shepard, 1990)-at least to the degree possible, given any noise-induced 
uncertainty about locations in the representational space (Shepard, 1986, 1990). Second, 
when the positive stimuli do not fonn a compact subset but are interspersed among negative 
(nonreinforced) stimuli, generalization should entail a slowing of classification learning 
(Nosofsky, 1986; Shepard & Chang, 1963). Third, repeated discrimination or classification 
learning, in which a boundary between positive and negative stimuli remains fixed, should 
induce a "fine tuning" stretching of the representational space at that boundary such that 
any subsequent learning will generalize less fully across that boundary. 

Our initial connectionist explorations have been for relatively simple cases using a un ide­
mensional stimulus set and a linear learning rule. These simulations serve to illustrate 
how infonnation about the probable disposition of a consequential region accrues, in a 
Bayesian manner, from successive encounters with different stimuli, each of which is or 
is not followed by the consequence. In complex cases, the cumulative effects on proba­
bility of generalized response, on latency of discriminative response, and on fine tuning of 
the psychophysical mapping may sometimes be easier to establish by simulation than by 
mathematical derivation. Fortunately for this purpose, the theory of generalization has a 
connectionist embodiment that is quite direct and neurophysiologically plausible. 

2 A CONNECTIONIST IMPLEMENTATION 

In the implementation reponed here, a linear array of 20 input units represents a set of 20 
stimuli differing along a unidimensional continnuum, such as the continuum of pitches of 
tones. The activation level of a given input unit is 1 when its corresponding stimulus is 
presented and 0 when it is not. (This localist representation of the "input" may be considered 
the output of a lower-level, massively parallel network for perpetual analysis.) 

When such an "input unit" is activated, its activation propagates upward and outward 
through successively higher layers of hidden units, giving rise to a cone of activation of that 
input unit (Figure la). Higher units are activated by wider ranges of input units (Le., have 
larger "receptive fields"). The hidden units thus represent potential consequential regions, 
with higher units corresponding to regions of greater sizes in representational space. 

The activation from any input unit is also subject to progressive attenuation as it propagates 
to succesively higher layers of hidden units. In the present fonn of the model, this attenuation 
comes about because the weights of the connections from input to hidden units falloff 
exponentially with the heights of the hidden units. (Connection weights are pictorially 
indicated in Figure 1 by the heavinesses of the connecting lines.) An exponential falloff 
of connection weight with height is natural, in that it corresponds to a decrement of fixed 
proportion as the activation propagates through each layer to the next. According to the 
generalizaton theory (Shepard, 1987), an exponential falloff is also optimum for the case 
of minimum prior knowledge, because it corresponds to the maximum entropy probability 
density distribution of possible sizes of a consequential region. 

When a response, Rk, is followed by a positive consequence in the presence of a stimulus, 
SI, a simple linear rule (either a Hebbian or a delta rule) will increase the weight of the 
connection from each representational unit, j, (whether inputor hidden unit) to that response 
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Figure 1: Schematic portrayal of the connectionist embodiment. (a) Initial 
connections from an input unit to hidden units in its "cone of activation." (b) 
Connections from these hidden units to a response unit following reinforcement 
of the response. 

unit, Ric, in proportion to the current level of activation, a j , of that representational unit. In 
the initial implementation considered here, the change in weight from representational unit 
j to the response unit Ric is simply 

llw;. = { 
>.aj (1 - alc) upon a positive outcome (reinforcement) 

upon a negative outcome (nonreinforcement) 

where>. is a learning rate parameter and alc is the current activation level of the response 
unit Ric (which, tending to be confined between 0 and 1, represents an estimate of the 
probability of the positive consequence). Following a positive outcome, then, positive 
weights will connect all the units in the cone of activation for SI to Ric, but with values that 
decay exponentially with the height of a unit in that cone (Figure Ib). 

If, now, a different stimulus, S2, is encountered, some but not all of the representational 
units that are in the cone of activation of SI and, hence, that are already connected to Ric 
will also fall in the cone of activation of S2 (Figure 1 b). It is these units in the overlap of the 
two cones that mediate generalization of the response from SI to S2. Not only is this simple 
connectionist scheme neurophysiologically plausible, it is also isomorphic to the theory 
of generalization (Shepard, 1987) based solely on considerations of optimal behavior in a 
world consisting of natural kinds. 
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3 PRELIMINARY CONNECTIONIST EXPLORATIONS 

The simulation results for generalization and discrimination learning are summarized in 
Figure 2. Panel a shows. for different stages of training on stimulus SlO. the level of 
response activation produced by activation of each of the 20 input units. In accordance 
with theory. this activation decayed exponentially with distance from the training stimulus. 
The obtained functions differ only by a multiplicative scale factor that increased (toward 
asymptote) with the amount of training. Following this training. the response connection 
weights decreased exponentially with the heights of the hidden units (panel b). Later training 
on a second positive stimulus. S12. created a secondary peak in the activation function (panel 
c). and still later nonreinforced presentation of a third stimulus. S9. produced a sharp drop 
in the activation function at the discrimination boundary (panel d). 
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Figure 2: Connectionist simulations of generalization and discrimination learning. 

Figure 3 presents the results for classification learning in which all stimuli were presented 
but with response reinforcement for stimuli in the positive set only. When the positive 
set was compact (panel a) sharp discrimination boundaries formed and response activation 
approached 1 for all positive stimuli and 0 for all negative stimuli. In accordance with 
theory and empirical data. generalization entailed slower classification learning when the 
positive stimuli were dispersed among negative stimuli (panel b)-as shown by a (mean 
square) error measure (panel c). 
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Figure 3: Connectionist simulations of classification learning. 

Finally. Panel d illustrates fine tuning of the psychophysical mapping when discrimination 
boundaries have the same locations for many successively learned classifications. In 
contrast to the preceding simulations. in which only the response connection weights were 
allowed to change. here the connection weights from the input units to the hidden units 
were also allowed to change through "back propagation" (Rumelhart. Hinton, & Williams. 
1986). For 400 learning epochs each. each of ten different responses was successively 
associated with the same five positive stimuli. SlO through S14. while reinforcement was 
withheld for all the remaining stimuli. Then. yet another response was associated with the 
single stimulus SlO. Although the resulting activation curves for this new response (panel d) 
are similar to the original generalization curves (Figure 2a). they drop more sharply where 
classification boundaries were previously located. This fine tuning of the psychophysical 
mapping proceeded. however. much more slowly than the learning of the classificatory 
responses themselves. 

4 CONCLUDING REMARKS 

This is just the beginning of the connectionist exploration of the implications of the gen­
eralization theory in more complex cases. In addition to accounting for generalization 
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and classification along a unidimensional continuum. the approach can account for gener­
alization and classification of stimuli differing with respect to multidimensional continua 
(Shepard. 1987) and also with respect to discrete features (Gluck. 1991; Russell. 1986). 
Finally, the connectionist implementation should facilitate a proposed extension to the 
treatment of response latencies as well as probabilities (Shepard. 1987). 

Connectionists have sometimes assumed an exponential decay generalization function. 
and their notion of radial basis functions is not unlike the present concept of consequential 
regions (see Hanson & Gluck. this volume). What has been advocated here (and in Shepard. 
1987) is the derivation of such functions and concepts from first principles. 
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