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Abstract 

This paper is concerned with the problem of learning in networks where some 
or all of the functions involved are not smooth. Examples of such networks are 
those whose neural transfer functions are piecewise-linear and those whose error 
function is defined in terms of the 100 norm. 
Up to now, networks whose neural transfer functions are piecewise-linear have 
received very little consideration in the literature, but the possibility of using an 
error function defined in terms of the 100 norm has received some attention. In 
this latter work, however, the problems that can occur when gradient methods are 
used for non smooth error functions have not been addressed. 
In this paper we draw upon some recent results from the field of nonsmooth 
optimization (NSO) to present an algorithm for the non smooth case. Our moti­
vation for this work arose out of the fact that we have been able to show that, 
in backpropagation, an error function based upon the 100 norm overcomes the 
difficulties which can occur when using the 12 norm. 

1 INTRODUCTION 

This paper is concerned with the problem of learning in networks where some or all of 
the functions involved are not smooth. Examples of such networks are those whose neural 
transfer functions are piecewise-linear and those whose error function is defined in terms 
of the 100 norm. 

·The author can be contacted via email atinternetaddressredding@itd.dsto.oz.au. 
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Up to now. networks whose neural transfer functions are piecewise-linear have received 
very little consideration in the literature. but the possibility of using an error function defined 
in terms of the £00 norm has received some attention [1]. In the work described in [1]. 
however. the problems that can occur when gradient methods are used for nonsmooth error 
functions have not been addressed. 

In this paper we draw upon some recent results from the field of nonsmooth optimization 
(NSO) to present an algorithm for the nonsmooth case. Our motivation for this work arose 
out of the fact that we have been able to show [2]1 that an error function based upon the £00 
norm overcomes the difficulties which can occur when using backpropagation's £2 norm 
[4]. 

The framework for NSO is the class of locally Lipschitzian functions [5]. Locally Lips­
chitzian functions are a broad class of functions that include. but are not limited to. "smooth to 

(completely differentiable) functions. (Note. however. that this framework does not include 
step-functions.) We here present a method for training feedforward networks (FFNs) whose 
behaviour can be described by a locally Lipschitzian function y = f lJIIt(w, x). where the 
input vector x = (Xl, ... , xn) is an element of the set of patterns X C Rn. W E Ril is the 
weight vector. and y E Rm is the m-dimensional output. 

The possible networks that fit within the locally Lipschitzian framework include any network 
that has a continuous. piecewise differentiable description. i.e., continuous functions with 
nondifferentiable points ("non smooth functionstt). 

Training a network involves the selection of a weight vector W* which minimizes an error 
function E( w). As long as the error function E is locally Lipschitzian. then it can be trained 
by the procedure that we will outline. which is based upon a new technique for NSO [6]. 

In Section 2. a description of the difficulties that can occur when gradient methods are 
applied to nonsmooth problems is presented. In Section 3. a short overview of the Bundle­
Trust algorithm [6] for NSO is presented. And in Section 4 details of applying a NSO 
procedure to training networks with an £00 based error function are presented. along with 
simulation results that demonstrate the viability of the technique. 

2 FAll..URE OF GRADIENT METHODS 

Two difficulties which arise when gradient methods are applied to nonsmooth problems will 
be discussed here. The first is that gradient descent sometimes fails to converge to a local 
minimum. and the second relates to the lack of a stopping criterion for gradient methods. 

2.1 THE "JAMMING" EFFECT 

We will now show that gradient methods can fail to converge to a local minimum (the 
"jamming" effect [7.8]). The particular example used here is taken from [9]. 

Consider the following function. that has a minimum at the point w* = (0,0): 

fl(W) = 3(w? + 2wi). (1) 

If we start at the point Wo = (2,1). it is easily shown that a steepest descent algorithm2 

would generate the sequence WI = (2, -1)/3. W2 = (2,1)/9 •...• so that the sequence 

lThis is quite simple. using a theorem due to Krishnan [3]. 
lrrhis is achieved by repeatedly perfonning a line search along the steepest descent direction. 
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Figure 1: A contour plot of the function h. 

{w/c} oscillates between points on the two half-lines Wl = 2'lV2 and Wl = -2'lV2 for 
Wl ~ O. converging to the optimal point w· = (0,0). Next. from the function ft. create a 
new function h in the following manner: 

(2) 

The gradient at any point of h is proportional to the gradient at the same point on It. so 
the sequence of points generated by a gradient descent algorithm starting from (2, 1) on h 
will be the same as the case for It. and will again converge3 to the optimal point. again 
w· = (0,0). 

Lastly. we shift the optimal point away from (0, 0), but keep a region including the sequence 
{ w/c} unchanged to create a new function 13 (w): 

hew) = { V3(w? + 2wD if 0 ~ 1'lV21 ~ 2Wl (3) 
~(Wl + 41'lV21) elsewhere. 

The new function 13, depicted in fig. 1, is continuous, has a discontinuous derivative only 
on the half-line Wl ~ O. 'lV2 = 0, and is convex with a "minimum" as Wl -- -00. In spite 
of this, the steepest descent algorithm still converges to the now nonoptimal "jamming" 
point (0, 0). A multitude of possible variations to It exist that will achieve a similar result, 
but the point is clear: gradient methods can lead to trouble when applied to non smooth 
problems. 

This lesson is important, because the backpropagation learning algorithm is a smooth 
gradient descent technique. and as such will have the difficulties described when it, or an 
extension (eg., [1]). are applied to a nonsmooth problem. 

2.2 STOPPING CRITERION 

The second significant problem associated with smooth descent techniques in a nonsmooth 
context occurs with the stopping criterion. In normal smooth circumstances. a stopping 

3Note that for this new sequence of points, the gradient no longer converges to 0 at (0,0), but 
oscillates between the values v'2(1, ±l). 
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criterion is determined using 
IIV'/II ~ (, (4) 

where ( is a small positive quantity determined by the required accuracy. However, it is 
frequently the case that the minimum of a non smooth function occurs at a nondifferentiable 
point or "kink", and the gradient is of little value around these points. For example, the 
gradient of /( w) = Iwl has a magnitude of 1 no matter how close w is to the optimum at 
w = O. 

3 NONSMOOTH OYfIMIZATION 

For any locally Lipschitzian function /, the generalized directional derivative always exists, 
and can be used to define a generalized gradient or subdifferential, denoted by 8/. which 

, is a compact convex set4 [5]. A particular element g E 8/(w) is termed a subgradientof 
/ at W [5,10]. In situations where / is strictly differentiable at w. the generalized gradient 
of / at W is equal to the gradient, i.e., 8/( w) = V' /( w). 

We will now discuss the basic aspects of NSO and in particular the Bundle-Trust (Bn 
algorithm [6]. 

Quite naturally. subgradients in NSO provide a substitute for the gradients in standard 
smooth optimization using gradient descent. Accordingly, in an NSO procedure, we require 
the following to be satisfied: 

At every w, we can compute /(w) and any g E 8/(w). (5) 

To overcome the jamming effect, however. it is not sufficient replace the gradient with 
a subgradient in a gradient descent algorithm - the strictly local information that this 
provides about the function's behaviour can be misleading. For example, an approach like 
this will not change the descent path taken from the starting point (2,1) on the function h 
(see fig. 1). 

The solution to this problem is to provide some "smearing" of the gradient information by 
enriching the information at w with knowledge of its surroundings. This can be achieved 
by replacing the strictly local subgradients g E 8/(w) by UVEB g E 8/(v) where B is a 
suitable neighbourhoodofw, and then define the (-generalized gradient 8 f /(w) as 

8f /(w) 6 co { u 8/(V)} 
VEB(W,f) 

(6) 

where ( > 0 and small, and co denotes a convex hull. These ideas were first used by [7] 
to overcome the lack of continuity in minimax problems, and have become the basis for 
extensive work in NSO. 

In an optimization procedure. points in a sequence {WI:, k = 0,1, ... } are visited until a 
point is reached at which a stopping criterion is satisfied. In a NSO procedure, this occurs 
when a point WI: is reached that satisfies the condition 0 E 8f /(wl:). and the point is said 
to be (-optimal. That is, in the case of convex /, the point WI: is (-optimal if 

(7) 

4In other words, a set of vectors will define the generalized gradient of a non smooth function at a 
single point. rather than a single vector in the case of smooth functions. 
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and in the case of nonconvex I. 
I(Wk) ~ I(w) + (IIW - w,,11 + (forall wEB (8) 

where B is some neighbourhood of Wk of nonzero dimension. Obviously. as ( ~ 0. then 
Wk ~ w· at which 0 E () I( w·). i.e., Wk is ''within (" of the local minimum w·. 

Usually the (-generalized gradient is not available. and this is why the bundle concept is 
introduced. The basic idea of a bundle concept in NSO is to replace the (-generalized 
gradient by some inner approximating polytope P which will then be used to compute a 
descent direction. If the polytope P is a sufficiently good approximation to I. then we will 
find a direction along which to descend (a so-called serious step). In the case where P is not 
a sufficiently good approximation to I to yield a descent direction. then we perfonn a null 
step. staying at our current position W. and try to improve P by adding another subgI'adient 
() I ( v) at some nearby point v to our current position w. 

A natural way of approximating I is by using a cutting plane (CP) approximation. The CP 
approximation of I( w) at the point Wk is given by the expression [6] 

max {gNw - Wi) + I(Wi)}' (9) 
1 (i(k 

where gi is a subgradient of I at the point Wi. We see then that (9) provides a piecewise 
linear approximation of convexs I from below. which will coincide with I at all points Wi. 
For convenience, we redefine the CP approximation in terms of d = W - Wk. d E Rb, the 
vector difference of the point of approximation. W. and the current point in the optimization 
sequence. Wk, giving the CP approximation I Cp of I: 

I CP(Wk, d) = max {g/d + g/(Wk - w;) + I(Wi)}. (10) 
l(i(k 

Now, when the CP approximation is minimized to find a descent direction, there is no 
reason to trust the approximation far away from Wk. So, to discourage a large step size, a 
stabilizing term Ikd td. where tk is positive, is added to the CP approximation. 

If the CP approximation at Wk of I is good enough, then the dk given by 

dk = arg min I CP(Wk, d) + _1_d td (11) 
d 2tk 

will produce a descent direction such that a line search along Wk + Adk will find a new 
point Wk+l at which I(Wk+l) < I(Wk) (a serious step). It may happen that I Cp is such a 
poor approximation of I that a line search along dk is not a descent direction. or yields only 
a marginal improvement in I. If this occurs, a null step is taken and one enriches the bundle 
of subgradients from which the CP approximation is computed by adding a subgradient 
from () I (Wk + Adk) for small A > O. Each serious step guarantees a decrease in I. and a 
stopping criterion is provided by tenninating the algorithm as soon as dk in (11) satisfies 
the (-optimality criterion, at which point Wk is (-Optimal. These details are the basis of 
bundle methods in NSO [9,10]. 

The bundle method described suffers from a weak point: its success depends on the delicate 
selection of the parameter tk in (11) [6], This weakness has led to the incorporation of a 
"trust region" concept [11] into the bundle method to obtain the B T (bundle-trust) algorithm 
[6]. 

SIn the nonconVex f case, (9) is not an approximation to f from below, and additional tolerance 
parameters must be considered to accommodate this situation [6]. 
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To incorporate a trust region, we define a "radius tt that defines a ball in which we can "trust" 
that fa> is a good approximation of f. In the BT algorithm, by following trust region 
concepts, the choice of t A: is not made a priori and is determined during the algorithm by 
varying tA: in a systematic way (trust part) and improving the CP approximation by null 
steps (bundle part) until a satisfactory CP approximation f a> is obtained along with a ball 
(in terms of t A:) on which we can trust the approximation. Then the dA: in (11) willlea1 to 
a substantial decrease in f. 
The full details of the BT algorithm can be found in [6], along with convergence proofs. 

4 EXAMPLES 

4.1 A SMOOTH NETWORK WITH NONSMOOTH ERROR FUNCTION 

The particular network example we consider here is a two-layer FFN (i.e .• one with a single 
layer of hidden units) where each output unit's value Yi is computed from its discriminant 

function Qo; = WiO+ 2:7=1 Wij Zj, by the transfer function Yi = tanh(Qo;), where Zj is the 
output of the j-th hidden unit. The j-th hidden unit's output Zj is given by Zj = tanh(Qhj)' 
where QhL" = VjO + 2:~=1 VjA:Xj is its discriminant function. The £00 error function (which 
is locally ipschitzian) is defined to be 

E(w) = max rJ¥lX IQo, (x) - ti(X)I, (12) xeX l(.(m 

where ti (x) is the desired output of output unit i for the input pattern x EX. 

To make use of the B T algorithm described in the previous section, it is necessary to obtain 
an expression from which a subgradient at w for E( w) in (12) can be computed. Using the 
generalized gradient calculus in [5, Proposition 2.3.12], a subgradientg E 8E(w) is given 
by the expression6 

g = sgn (QO;I (x') - ti' (x')) VWQO;I (x') for some i', x' E .J (14) 

where .J is the set of patterns and output indices for which E (w) in (12) obtains it maximum 
value, and the gradient VWQO,I (x') is given by 

1 
Zj 

(1 - zJ)Wilj 

x1:(1 - ZJ)Wilj 

o 
(Note that here j = 1,2, ... , h and k = I, ... , n). 

w.r.t. Wi'O 

w.r.t. Wi'j 

w.r.t. VjO 

w.r.t. VjA: 

elsewhere. 

(15) 

The BT technique outlined in the previous section was applied to the standard XOR and 
838 encoder problems using the £00 error function in (12) and subgradients from (14,15). 

6Note that for a function f(w) = Iwl = max{w, -w}. the generalized gradient is given by the 
expression 

{ 
1 w>o 

8f(w) = co{l, -l} x = 0 
-1 x < 0 

(13) 

and a suitable subgradient g E 8 f ( w) can be obtained by choosing g = sgn( w ). 
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In all test runs, the BT algorithm was run until convergence to a local minimum of the too 
error function occurred with (set at 10-4• On the XOR problem, over 20 test runs using a 
randomly initialized 2-2-1 network, an average of 52 function and subgradient evaluations 
were required. The minimum number of function and subgradient evaluations required 
in the test runs was 23 and the maximum was 126. On the 838 encoder problem, over 
20 test runs using a randomly initialized 8-3-8 network, an average of 334 function and 
subgradient evaluations were required. For this problem, the minimum number of function 
and subgradient evaluations required in the test runs was 221 and the maximum was 512. 

4.2 A NON SMOOTH NETWORK AND NONSMOOTH ERROR FUNCTION 

In this section we will consider a particular example that employs a network function that 
is nonsmooth as well as a nonsmooth error function (the too error function of the previous 
example). 

Based on the piecewise-linear network employed by [12], let the i-th output of the network 
be given by the expression 

n h n 

Yi = L "ikXk + L Wij L VjkXk + VjO + WiO (16) 
k=1 j=1 k=1 

with an too -based error function 

E(w) = max m~ IYi(X) - ti(x)l. 
xeK U;,'m 

(17) 

Once again using the generalized gradient calculus from [5, Proposition 2.3.12], a single 
subgradient g E 8E(w) is given by the expression 

(Note that j = 1,2, ... , h, k = 1,2, ... , n). 

w.r.t. "i'k 

w.r.t. Wi'O 
w.r.t. Wi'j 
w.r.t. VjO 

w.r.t. Vjk 

elsewhere. 

(18) 

In all cases the (-stopping criterion is set at 10-4• On the XOR problem, over 20 test 
runs using a randomly initialized 2-2-1 network, an average of 43 function and subgradient 
evaluations were required. The minimum number of function and subgradient evaluations 
required in the test runs was 30 and the maximum was 60. On the 838 encoder problem, 
over 20 test runs using a randomly initialized 8-3-8 network, an average of 445 function and 
subgradient evaluations were required. For this problem, the minimum number of function 
and subgradient evaluations required in the test runs was 386 and the maximum was 502. 

5 CONCLUSIONS 

We have demonstrated the viability of employing NSO for training networks in the case 
where standard procedures, with their implicit smoothness assumption, would have diffi­
culties or find impossible. The particular nonsmooth examples we considered involved an 
error function based on the too norm, for the case of a network with sigmoidal characteristics 
and a network with a piecewise-linear characteristic. 
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Nonsmooth optimization problems can be dealt with in many different ways. A possible 
alternative approach to the one presented here (that works for most NSO problems) is 
to express the problem as a composite function and then solve it using the exact penalty 
method (termed composite NSO) [11]. Fletcher [11, p. 358] states that in practice this 
can require a great deal of storage or be too complicated to formulate. In contrast, the 
BT algorithm solves the more general basic NSO problem and so can be more widely 
applied than techniques based on composite functions. The BT algorithm is simpler to 
set up, but this can be at the cost of algorithm complexity and a computational overhead. 
The BT algorithm, however, does retain the gradient descent flavour of backpropagation 
because it uses the generalized gradient concept along with a chain rule for computing these 
(generalized) gradients. Nongradient-based and stochastic methods for NSO do exist, but 
they were not considered here because they do not retain the gradient-based deterministic 
flavour. It would be useful to see if these other techniques are faster for practical problems. 

The message should be clear however - smooth gradient techniques should be treated with 
suspicion when a nonsmooth problem is encountered, and in general the more complicated 
nonsmooth methods should be employed. 
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