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Abstract 

This paper considers the problem of expressing predicate calculus in con­
nectionist networks that are based on energy minimization. Given a first­
order-logic knowledge base and a bound k, a symmetric network is con­
structed (like a Boltzman machine or a Hopfield network) that searches 
for a proof for a given query. If a resolution-based proof of length no 
longer than k exists, then the global minima of the energy function that 
is associated with the network represent such proofs. The network that 
is generated is of size cubic in the bound k and linear in the knowledge 
size. There are no restrictions on the type of logic formulas that can be 
represented. The network is inherently fault tolerant and can cope with 
inconsistency and nonmonotonicity. 

1 Introduction 

The ability to reason from acquired knowledge is undoubtedly one of the basic and 
most important components of human intelligence. Among the major tools for 
reasoning in the area of AI are deductive proof techniques. However, traditional 
methods are plagued by intractability, inability to learn and adjust, as well as by 
inability to cope with noise and inconsistency. A connectionist approach may be 
the missing link: fine grain, massively parallel architecture may give us real-time 
approximation; networks are potentially trainable and adjustable; and they may be 
made tolerant to noise as a result of their collective computation. 

Most connectionist reasoning systems that implement parts of first-order logic 
(see for examples: (Holldobler 90], [Shastri et a1. 90]) use the spreading activation 
paradigm and usually trade expressiveness with time efficiency. In contrast, this 
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paper uses the energy minimization paradigm (like [Derthick 88], [Ballard 86] and 
[Pinkas 91c]), representing an intractable problem, but trading time with correct­
ness; i.e., as more time is given, the probability of converging to a correct answer 
increases. 

Symmetric connectionist networks used for constraint satisfaction are the 
target platform [Hopfield 84b], [Hinton, Sejnowski 86], (peterson, Hartman 89], 
[Smolensky 86]. They are characterized by a quadratic energy function that should 
be minimized. Some of the models in the family may be seen as performing a search 
for a global minimum of their energy function. The task is therefore to represent 
logic deduction that is bound by a finite proof length as energy minimization (with­
out a bound on the proof length, the problem is undecidable). When a query is 
clamped, the network should search for a proof that supports the query. If a proof 
to the query exists, then every global minimum of the energy function associated 
with the network represents a proof. If no proof exists, the global minima represent 
the lack of a proof. 

The paper elaborates the propositional case; however, due to space limitations, the 
first-order (FOL) case is only sketched. For more details and full treatment of FOL 
see [Pinkas 91j]. 

2 Representing proofs of propositional logic 

I'll start by assuming that the knowledge base is propositional. 

The proof area: 
A proof is a list of clauses ending with the query such that every clause used is 
either an original clause, a copy (or weakening) of a clause that appears earlier in 
the proof, or a result of a resolution step of the two clauses that appeared just 
earlier. The proof emerges as an activation pattern on special unit structures called 
the proof area, and is represented in reverse to the common practice (the query 
appears first). For example: given a knowledge base of the following clauses: 
1) A 
2) ..,Av B vC 
3) ..,Bv D 
4) ..,CV D 
we would like to prove the query D, by generating the following list of clauses: 

1) D 
2) A 
3) ..,Av D 
4) ..,CV D 
5) -.AVCv D 
6) -.Bv D 
7) ..,Av B vC 

(obtained by resolution of clauses 2 and 3 by canceling A). 
(original clause no. 1). 
(obtained by resolution of clauses 4 and 5 by canceling C). 
(original clause no. 4). 
(obtained by resolution of clauses 6 and 7 by canceling B). 
(original clause no. 3). 
(original clause no. 2). 

Each clause in the proof is either an original clause, a copy of a clause from earlier 
in the proof, or a resolution step. 

The matrix C in figure 1, functions as a clause list. This list represents an ordered 
set of clauses that form the proof. The query clauses are clamped onto this area 
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and activate hard constraints that force the rest of the units of the matrix to form 
a valid proof (if it exists). 
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Variable binding is performed by dynamic allocation of instances using a technique 
similar to [Anand an et a!. 891 and [Barnden 91]. In this technique, if two symbols 
need to be bound together, an instance is allocated from a pool of general purpose 
instances, and is connected to both symbols. An instance can be connected to a 
literal in a clause, to a predicate type, to a constant, to a function or to a slot 
of another instance (for example, a constant that is bound to the first slot of a 
predicate). 

The clauses that participate in the proof are represented using a 3-dimensional 
matrix (C.",;) and a 2-dimensional matrix (P";) as illustrated in figure 1. The 
rows of C represent clauses of the proof, while the rows of P represent atomic 
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propositions. The columns of both matrices represent the pool of instances used for 
binding propositions to clauses. 

A clause is a list of negative and positive instances that represent literals. The 
instance thus behaves as a two-way pointer that binds composite structures like 
clauses with their constituents (the atomic propositions). A row i in the matrix 
C represents a clause which is composed of pairs of instances. If the unit C+,i,i is 
set, then the matrix represents a positive literal in clause i. If P A,i is also set, then 
C+,',j represents a positive literal of clause i that is bound to the atomic proposition 
A. Similarly C-"J represents a negative literal. 

The first row of matrix C in the figure is the query clause D. It contains only one 
positive literal that is bound to atomic proposition D via instance 4. For another 
example consider the third row of the C which represents a clause of two literals: a 
positive one that is bound to D via instance 4, and a negative one bound to A via 
instance 1 (it is the clause ..,A V D, generated as a result of a resolution step). 

Participation in the proof: The vector IN represents whether clauses in C 
participate in the proof. In our example, all the clauses are in the proof; however, 
in the general case some of the rows of C may be meaningless. When IN. is on, it 
means that the clause i is in the proof and must be proved as well. Every clause that 
participates in the proof is either a result of a resolution step (RES. is set), a copy 
of a some clause (CPYi is set), or it is an original clause from the knowledge base 
(K B. is set). The second clause of C in figure 1 for example is an original clause 
of the knowledge base. If a clause j is copied, it must be in the proof itself and 
therefore I Nj is set. Similarly, if clause i is a result of a resolution step, then the two 
resolved clauses must also be in the proof (I Ni+l,i and I Ni+2,i) and therefore must 
be themselves resolvents, copies or originals. This chain of constraints continues 
until all constraints are satisfied and a valid proof is generated. 

Posting a query: The user posts a query clamping its clauses onto the first rows 
of C and setting the appropriate IN units. This indicates that the query clauses 
participate in the proof and should be proved by either a resolution step, a copy 
step or by an original clause. Figure 1 represents the complete proof for the query 
D . We start by allocating an instance (4) for D in the P matrix, and clamping a 
positive literal D in the first row of C (C+,l ,4); the rest of the first row's units are 
clamped zero. The unit INl is biased (to have the value of one), indicating that 
the query is in the proof; this cause a chain of constraints to be activated that are 
satisfied only by a valid proof. If no proof exists, the I Nl unit will become zero; 
i.e., the global minima is obtained by setting I Nl to zero despite the bias. 

Representing resolutions steps: The vector RES is a structure of units that 
indicates which are the clauses in C that are obtained by a resolution step. If RES, 
is set, then the ith row is obtained by resolving row i + 1 of C with row i + 2. 
Thus, the unit RESl in figure 1 indicates that the clause D of the first row of 
C is a resolvent of the second and the third rows of C representing ..,A V D and 
A respectfully. Two literals cancel each other if they have opposite signs and are 
represented by the same instance. In figure 1, literal A of the third row of C and 
literal ..,A of the second row cancel each other, generating the clause of the first 
row. 

The rows of matrix R represent literals canceled by resolution steps. If row i of 
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C is the result of a resolution step, there must be one and only one instance j such 
that both clause i + 1 and clause i + 2 include it with opposite signs. For example 
(figure 1): clause D in the first row of C is the result of resolving clause A with 
clause..,A V D which are in the second and third rows of C respectfully. Instance 1, 
representing atomic proposition A, is the one that is canceled; RI,I is set therefore, 
indicating that clause 1 is obtained by a resolution step that cancels the literals of 
instance 1. 

Copied and original clauses: The matrix D indicates which clauses are copied 
to other clauses in the proof area. Setting Di,i means that clause i is obtained by 
copying (or weakening) clause j into clause i (the example does not use copy steps). 

The matrix K indicates which original knowledge-base clauses participate in the 
proof. The unit Ki,J indicates that a clause i in the proof area is an original clause, 
and the syntax of the j-th clause in the knowledge base must be imposed on the 
units of clause i. In figure 1 for example, clause 2 in the proof (the second row in 
C), assumes the identity of clause number 1 in the knowledge base and therefore 
K l ,2 is set. 

3 Constraints 

We are now ready to specify the constraints that must be satisfied by the units so 
that a proof is found. The constraints are specified as well formed logic formulas. 
For example the formula (A V B) "C imposes a constraint over the units (A,B,C) 
such that the only possible valid assignments to those units are (011), (101), (111). 
A general method to implement an arbitrary logical constraint on connectionist 
networks is shown in [Pinkas 90b]. Most of the constraints specified in this section 
are hard constraints; i.e., must be satisfied for a valid proof to emerge. Towards the 
end of this section, some soft constraints are presented. 

In-proof constraints: If a clause participates in the proof, it must be either a 
result of a resolution step, a copy step or an original clause. In logic, the constraints 
may be expressed as: Vi : INi- RESi V CP'Yi V K Bi. The three units (per clause 
i) consist a winner takes all subnetwork (WTA). This means that only one of the 
three units is actually set. The WTA constraints may be expressed as: 
RESi-..,CP'Yi " ..,K Bi 
CP'Yi--,RESi " ..,K Bi 
K Bi--,RESi " ..,C P'Yi 
The WTA property may be enforced by inhibitory connections between every pair 
of the three units. 

Copy constraints: If CPYi is set then clause i must be a copy of another clause 
j in the proof. This can be expressed as Vi : C P'Yi- V . (Di,i " I Ni ). The rows of 
Dare WTAs allowing-i to be a copy of only one j. In addition, if clause j is copied 
or weakened into clause i then every unit set in clause j must also be set in clause 
i. This may be specified as: Vi,j,l : Di,,- «C+,.,' +- C+",') " (C_,.,' +- C_",,». 

Resolution constraints: If a clause i is a result of resolving the two clauses 
i + 1 and i + 2, then there must be one and only one instance (j) that is canceled 
(represented by Ra,i)' and C. is obtained by copying both the instances of CHI and 
CH2, without the instance j. These constraints may be expressed as: 
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Vi : RE Si- Vi Ri,i at least one instance is canceled 
Vi,j,j',j' ¢ j: Ri,i--'Ri,i' only one instance is canceled (WT.t 
Vi, j : ~,i-(C+,i+l,i " C-,i+2,i) V (C-,i+1J "C+,i+2,j) cancel literals with opposite signs. 
Vi : RESi-INi+l "INi+2 the two resolvents are also in proof 
Vi : RE Si-( C+,i,i +-+( C+,i+l,i V C+,i+2,i) " "'Ri,i copy positive literals 
Vi: RESi-(C-,iJ+-+(C-,i+1J V C-,i+2J) " -'~,i copy negative literals 

Clause-instance constraints: The sign of an instance in a clause should be 
unique; therefore, any instance pair in the matrix Cis WTA: Vi, j : C+,i,i--,C-,iJ' 
The columns of matrix P are WTAs since an instance is allowed to represent only 
one atomic prop06ition: VA, i, B :F A : PA,i-",PB,i. The rows of P may be also 
WTAs: VA,i,j:f; i: PA,i-"'PA,j (this constraint is not imposed in the FOL case). 

Knowledge base constraints: If a clause i is an original knowledge base clause, 
then there must be a clause j (out of the m original clauses) whose syntax is forced 
upon the units of the i-th row of matrix C. This constraint can be expressed as: 
Vi : K Bi- Vj Ki,i' The rows of K are WTA networks so that only one original 
clause is forced on the units of clause i: Vi, j, j' :F j : K',i--,Ki,i" 

The only hard constraints that are left are those that force the syntax of a particular 
clause from the knowledge base. Assume for example that Ki,4 is set, meaning that 
clause i in C must have the syntax of the fourth clause in the knowledge base of our 
example (..,CV D). Instances j and j' must be allocated to the atomic propositions 
C and D respectfully, and must appear also in clause i as the literals C-,iJ and 
C+,i,i" The following constraints capture the syntax of (..,CV D): 

Vi : Ki,4- V . (C_ ,iJ " PC,i) there exists a negative literal that is bound to C; 
Vi: K i ,4- V; (D+,i,i "Pc,i) there exists a positive literal that is bound to D. 

FOL extension: 
In first-order predicate logic (FOL) instead of atomic propositions we must deal 
with predicates (see [pinkas 91j] for details). As in the propositional case, a literal 
in a clause is represented by a positive or negative instance; however, the instance 
must be allocated now to a predicate name and may have slots to be filled by other 
instances (representing functions and constants). To accommodate such complexity 
a new matrix (NEST) is added, and the role of matrix P is revised. 

The matrix P must accommodate now function names, predicate names and con­
stant names instead of just atomic propositions. Each row of P represents a name, 
and the columns represent instances that are allocated to those names. The rows 
of P that are associated with predicates and functions may contain several differ­
ent instances of the same predicate or function, thus, they are not WTA anymore. 
In order to represent compound terms and predicates, instances may be bound to 
slots of other instances. The new matrix (N ESn,i,p) is capable of representing 
such bindings. If N ESn,i,p is set, then instance i is bound to the p slot of instance 
j. The columns of NEST are WTA, allowing only one instance to be bound to 
a certain slot of another instance. When a clause i is forced to have the syntax 
of some original clause I, syntactic constraints are triggered so that the literals of 
clause i become instantiated by the relevant predicates, functions, constants and 
variables imposed by clause I. 
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Unification is implicitly obtained if two predicates are representing by the same 
instance while still satisfying all the constraints (imposed by the syntax of the 
two clauses). When a resolution step is needed, the network tries to allocate the 
same instance to the two literals that need to cancel each other. If the syntactic 
constraints on the literals permit such sharing of an instance, then the attempt 
to share the instance is successful and a unification occurs (occur check is done 
implicitly since the matrix NEST allows the only finite trees to be represented). 

Minimizing the violation of soft constraints: Among the valid proofs some 
are preferable to others. By means of soft constraints and optimization it is possible 
to encourage the network to search for preferred proofs. Theorem-proving thus is 
viewed as a constraint optimization problem. A weight may be assigned to each 
of the constraints [Pinkas 91c) and the network tries to minimize the weighted sum 
of the violated constraints, so that the set of the optimized solutions is exactly the 
set of the preferred proofs. For example, preference of proofs with most general 
unification is obtained by assignment of small penalties (negative bias) to every 
binding of a function to a position of another instance (in NEST). Using similar 
techniques, the network can be made to prefer shorter, more parsimonious or more 
reliable proofs, low-cost plans or even more specific arguments as in nonmonotonic 
reasonmg. 

4 Summary 

Given a finite set T of m clauses, where n is the number of different predicates, 
functions and constants, and given also a bound k over the proof length, we can 
generate a network that searches for a proof with length not longer then k, for 
a clamped query Q. If a global minimum is found then an answer is given as to 
whether there exists such a proof, and the proof (with MGU's) may be extracted 
from the state of the visible units. Among the possible valid proofs the system 
prefers some "better" proofs by minimizing the violation of soft constraints. The 
concept of "better" proofs may apply to applications like planning (minimize the 
cost), abduction (parsimony) and nonmonotonic reasoning (specificity). 

In the propositional case the generated network is of O(k2 + km + kn) units and 
O( k3 + km + kn) connections. For predica;te logic there are O( k3 + km + kn) units 
and connections, and we need to add O( Pm) connections and hidden units, where 
i is the complexity-level of the syntactic constraints [Pinkas 91j). 

The results improve an earlier approach [Ballard 86]: There are no restrictions on 
the rules allowed; every proof no longer than the bound is allowed; the network 
is compact and the representation of bindings (unifications) is efficient; nesting of 
functions and multiple uses of rules are allowed; only one relaxation phase is needed; 
inconsistency is allowed in the knowledge base, and the query does not need to be 
negated and pre-wired (it can be clamped during query time). 

The architecture discussed has a natural fault-tolerance capability: When a unit 
becomes faulty, it simply cannot assume a role in the proof, and other units are 
allocated instead. 
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