
Constructing Proofs in Symmetric Networks

Gadi Pinkas
Computer Science Department
Washington University
Campus Box 1045
St. Louis, MO 63130

Abstract

This paper considers the problem of expressing predicate calculus in con­
nectionist networks that are based on energy minimization. Given a first­
order-logic knowledge base and a bound k, a symmetric network is con­
structed (like a Boltzman machine or a Hopfield network) that searches
for a proof for a given query. If a resolution-based proof of length no
longer than k exists, then the global minima of the energy function that
is associated with the network represent such proofs. The network that
is generated is of size cubic in the bound k and linear in the knowledge
size. There are no restrictions on the type of logic formulas that can be
represented. The network is inherently fault tolerant and can cope with
inconsistency and nonmonotonicity.

1 Introduction

The ability to reason from acquired knowledge is undoubtedly one of the basic and
most important components of human intelligence. Among the major tools for
reasoning in the area of AI are deductive proof techniques. However, traditional
methods are plagued by intractability, inability to learn and adjust, as well as by
inability to cope with noise and inconsistency. A connectionist approach may be
the missing link: fine grain, massively parallel architecture may give us real-time
approximation; networks are potentially trainable and adjustable; and they may be
made tolerant to noise as a result of their collective computation.

Most connectionist reasoning systems that implement parts of first-order logic
(see for examples: (Holldobler 90], [Shastri et a1. 90]) use the spreading activation
paradigm and usually trade expressiveness with time efficiency. In contrast, this

217

218 Pinkas

paper uses the energy minimization paradigm (like [Derthick 88], [Ballard 86] and
[Pinkas 91c]), representing an intractable problem, but trading time with correct­
ness; i.e., as more time is given, the probability of converging to a correct answer
increases.

Symmetric connectionist networks used for constraint satisfaction are the
target platform [Hopfield 84b], [Hinton, Sejnowski 86], (peterson, Hartman 89],
[Smolensky 86]. They are characterized by a quadratic energy function that should
be minimized. Some of the models in the family may be seen as performing a search
for a global minimum of their energy function. The task is therefore to represent
logic deduction that is bound by a finite proof length as energy minimization (with­
out a bound on the proof length, the problem is undecidable). When a query is
clamped, the network should search for a proof that supports the query. If a proof
to the query exists, then every global minimum of the energy function associated
with the network represents a proof. If no proof exists, the global minima represent
the lack of a proof.

The paper elaborates the propositional case; however, due to space limitations, the
first-order (FOL) case is only sketched. For more details and full treatment of FOL
see [Pinkas 91j].

2 Representing proofs of propositional logic

I'll start by assuming that the knowledge base is propositional.

The proof area:
A proof is a list of clauses ending with the query such that every clause used is
either an original clause, a copy (or weakening) of a clause that appears earlier in
the proof, or a result of a resolution step of the two clauses that appeared just
earlier. The proof emerges as an activation pattern on special unit structures called
the proof area, and is represented in reverse to the common practice (the query
appears first). For example: given a knowledge base of the following clauses:
1) A
2) ..,Av B vC
3) ..,Bv D
4) ..,CV D
we would like to prove the query D, by generating the following list of clauses:

1) D
2) A
3) ..,Av D
4) ..,CV D
5) -.AVCv D
6) -.Bv D
7) ..,Av B vC

(obtained by resolution of clauses 2 and 3 by canceling A).
(original clause no. 1).
(obtained by resolution of clauses 4 and 5 by canceling C).
(original clause no. 4).
(obtained by resolution of clauses 6 and 7 by canceling B).
(original clause no. 3).
(original clause no. 2).

Each clause in the proof is either an original clause, a copy of a clause from earlier
in the proof, or a resolution step.

The matrix C in figure 1, functions as a clause list. This list represents an ordered
set of clauses that form the proof. The query clauses are clamped onto this area

Constructing Proofs in Symmetric Networks 219

and activate hard constraints that force the rest of the units of the matrix to form
a valid proof (if it exists).

Query: D

A

.,AvD

-CvD

.,AvCvD

-JJvD

.,AvBvC

1

A 0
B

C

D

n

IN /2 C

3 4

RES KB O'Y

k
r-- e 1 0

2 0 ~ 3 0 0 @
4 0 ~

@
S 0 0@ G>

~

0
0

0
0

0
6 0 !0~
7 0 0 G> \G>J

0
0

k -
2 3 4 k 1 2 3 4 k

1

0 2 0

0 3

0 4 0
S

6 0

p 7 0

t

K

l"igure 1: The proof area for a propositional case

R

123

0

0

0

1 2

D

k

k

Variable binding is performed by dynamic allocation of instances using a technique
similar to [Anand an et a!. 891 and [Barnden 91]. In this technique, if two symbols
need to be bound together, an instance is allocated from a pool of general purpose
instances, and is connected to both symbols. An instance can be connected to a
literal in a clause, to a predicate type, to a constant, to a function or to a slot
of another instance (for example, a constant that is bound to the first slot of a
predicate).

The clauses that participate in the proof are represented using a 3-dimensional
matrix (C.",;) and a 2-dimensional matrix (P";) as illustrated in figure 1. The
rows of C represent clauses of the proof, while the rows of P represent atomic

220 Pinkas

propositions. The columns of both matrices represent the pool of instances used for
binding propositions to clauses.

A clause is a list of negative and positive instances that represent literals. The
instance thus behaves as a two-way pointer that binds composite structures like
clauses with their constituents (the atomic propositions). A row i in the matrix
C represents a clause which is composed of pairs of instances. If the unit C+,i,i is
set, then the matrix represents a positive literal in clause i. If P A,i is also set, then
C+,',j represents a positive literal of clause i that is bound to the atomic proposition
A. Similarly C-"J represents a negative literal.

The first row of matrix C in the figure is the query clause D. It contains only one
positive literal that is bound to atomic proposition D via instance 4. For another
example consider the third row of the C which represents a clause of two literals: a
positive one that is bound to D via instance 4, and a negative one bound to A via
instance 1 (it is the clause ..,A V D, generated as a result of a resolution step).

Participation in the proof: The vector IN represents whether clauses in C
participate in the proof. In our example, all the clauses are in the proof; however,
in the general case some of the rows of C may be meaningless. When IN. is on, it
means that the clause i is in the proof and must be proved as well. Every clause that
participates in the proof is either a result of a resolution step (RES. is set), a copy
of a some clause (CPYi is set), or it is an original clause from the knowledge base
(K B. is set). The second clause of C in figure 1 for example is an original clause
of the knowledge base. If a clause j is copied, it must be in the proof itself and
therefore I Nj is set. Similarly, if clause i is a result of a resolution step, then the two
resolved clauses must also be in the proof (I Ni+l,i and I Ni+2,i) and therefore must
be themselves resolvents, copies or originals. This chain of constraints continues
until all constraints are satisfied and a valid proof is generated.

Posting a query: The user posts a query clamping its clauses onto the first rows
of C and setting the appropriate IN units. This indicates that the query clauses
participate in the proof and should be proved by either a resolution step, a copy
step or by an original clause. Figure 1 represents the complete proof for the query
D . We start by allocating an instance (4) for D in the P matrix, and clamping a
positive literal D in the first row of C (C+,l ,4); the rest of the first row's units are
clamped zero. The unit INl is biased (to have the value of one), indicating that
the query is in the proof; this cause a chain of constraints to be activated that are
satisfied only by a valid proof. If no proof exists, the I Nl unit will become zero;
i.e., the global minima is obtained by setting I Nl to zero despite the bias.

Representing resolutions steps: The vector RES is a structure of units that
indicates which are the clauses in C that are obtained by a resolution step. If RES,
is set, then the ith row is obtained by resolving row i + 1 of C with row i + 2.
Thus, the unit RESl in figure 1 indicates that the clause D of the first row of
C is a resolvent of the second and the third rows of C representing ..,A V D and
A respectfully. Two literals cancel each other if they have opposite signs and are
represented by the same instance. In figure 1, literal A of the third row of C and
literal ..,A of the second row cancel each other, generating the clause of the first
row.

The rows of matrix R represent literals canceled by resolution steps. If row i of

Constructing Proofs in Symmetric Networks 221

C is the result of a resolution step, there must be one and only one instance j such
that both clause i + 1 and clause i + 2 include it with opposite signs. For example
(figure 1): clause D in the first row of C is the result of resolving clause A with
clause..,A V D which are in the second and third rows of C respectfully. Instance 1,
representing atomic proposition A, is the one that is canceled; RI,I is set therefore,
indicating that clause 1 is obtained by a resolution step that cancels the literals of
instance 1.

Copied and original clauses: The matrix D indicates which clauses are copied
to other clauses in the proof area. Setting Di,i means that clause i is obtained by
copying (or weakening) clause j into clause i (the example does not use copy steps).

The matrix K indicates which original knowledge-base clauses participate in the
proof. The unit Ki,J indicates that a clause i in the proof area is an original clause,
and the syntax of the j-th clause in the knowledge base must be imposed on the
units of clause i. In figure 1 for example, clause 2 in the proof (the second row in
C), assumes the identity of clause number 1 in the knowledge base and therefore
K l ,2 is set.

3 Constraints

We are now ready to specify the constraints that must be satisfied by the units so
that a proof is found. The constraints are specified as well formed logic formulas.
For example the formula (A V B) "C imposes a constraint over the units (A,B,C)
such that the only possible valid assignments to those units are (011), (101), (111).
A general method to implement an arbitrary logical constraint on connectionist
networks is shown in [Pinkas 90b]. Most of the constraints specified in this section
are hard constraints; i.e., must be satisfied for a valid proof to emerge. Towards the
end of this section, some soft constraints are presented.

In-proof constraints: If a clause participates in the proof, it must be either a
result of a resolution step, a copy step or an original clause. In logic, the constraints
may be expressed as: Vi : INi- RESi V CP'Yi V K Bi. The three units (per clause
i) consist a winner takes all subnetwork (WTA). This means that only one of the
three units is actually set. The WTA constraints may be expressed as:
RESi-..,CP'Yi " ..,K Bi
CP'Yi--,RESi " ..,K Bi
K Bi--,RESi " ..,C P'Yi
The WTA property may be enforced by inhibitory connections between every pair
of the three units.

Copy constraints: If CPYi is set then clause i must be a copy of another clause
j in the proof. This can be expressed as Vi : C P'Yi- V . (Di,i " I Ni). The rows of
Dare WTAs allowing-i to be a copy of only one j. In addition, if clause j is copied
or weakened into clause i then every unit set in clause j must also be set in clause
i. This may be specified as: Vi,j,l : Di,,- «C+,.,' +- C+",') " (C_,.,' +- C_",,».

Resolution constraints: If a clause i is a result of resolving the two clauses
i + 1 and i + 2, then there must be one and only one instance (j) that is canceled
(represented by Ra,i)' and C. is obtained by copying both the instances of CHI and
CH2, without the instance j. These constraints may be expressed as:

222 Pinkas

Vi : RE Si- Vi Ri,i at least one instance is canceled
Vi,j,j',j' ¢ j: Ri,i--'Ri,i' only one instance is canceled (WT.t
Vi, j : ~,i-(C+,i+l,i " C-,i+2,i) V (C-,i+1J "C+,i+2,j) cancel literals with opposite signs.
Vi : RESi-INi+l "INi+2 the two resolvents are also in proof
Vi : RE Si-(C+,i,i +-+(C+,i+l,i V C+,i+2,i) " "'Ri,i copy positive literals
Vi: RESi-(C-,iJ+-+(C-,i+1J V C-,i+2J) " -'~,i copy negative literals

Clause-instance constraints: The sign of an instance in a clause should be
unique; therefore, any instance pair in the matrix Cis WTA: Vi, j : C+,i,i--,C-,iJ'
The columns of matrix P are WTAs since an instance is allowed to represent only
one atomic prop06ition: VA, i, B :F A : PA,i-",PB,i. The rows of P may be also
WTAs: VA,i,j:f; i: PA,i-"'PA,j (this constraint is not imposed in the FOL case).

Knowledge base constraints: If a clause i is an original knowledge base clause,
then there must be a clause j (out of the m original clauses) whose syntax is forced
upon the units of the i-th row of matrix C. This constraint can be expressed as:
Vi : K Bi- Vj Ki,i' The rows of K are WTA networks so that only one original
clause is forced on the units of clause i: Vi, j, j' :F j : K',i--,Ki,i"

The only hard constraints that are left are those that force the syntax of a particular
clause from the knowledge base. Assume for example that Ki,4 is set, meaning that
clause i in C must have the syntax of the fourth clause in the knowledge base of our
example (..,CV D). Instances j and j' must be allocated to the atomic propositions
C and D respectfully, and must appear also in clause i as the literals C-,iJ and
C+,i,i" The following constraints capture the syntax of (..,CV D):

Vi : Ki,4- V . (C_ ,iJ " PC,i) there exists a negative literal that is bound to C;
Vi: K i ,4- V; (D+,i,i "Pc,i) there exists a positive literal that is bound to D.

FOL extension:
In first-order predicate logic (FOL) instead of atomic propositions we must deal
with predicates (see [pinkas 91j] for details). As in the propositional case, a literal
in a clause is represented by a positive or negative instance; however, the instance
must be allocated now to a predicate name and may have slots to be filled by other
instances (representing functions and constants). To accommodate such complexity
a new matrix (NEST) is added, and the role of matrix P is revised.

The matrix P must accommodate now function names, predicate names and con­
stant names instead of just atomic propositions. Each row of P represents a name,
and the columns represent instances that are allocated to those names. The rows
of P that are associated with predicates and functions may contain several differ­
ent instances of the same predicate or function, thus, they are not WTA anymore.
In order to represent compound terms and predicates, instances may be bound to
slots of other instances. The new matrix (N ESn,i,p) is capable of representing
such bindings. If N ESn,i,p is set, then instance i is bound to the p slot of instance
j. The columns of NEST are WTA, allowing only one instance to be bound to
a certain slot of another instance. When a clause i is forced to have the syntax
of some original clause I, syntactic constraints are triggered so that the literals of
clause i become instantiated by the relevant predicates, functions, constants and
variables imposed by clause I.

Constructing Proofs in Symmetric Networks 223

Unification is implicitly obtained if two predicates are representing by the same
instance while still satisfying all the constraints (imposed by the syntax of the
two clauses). When a resolution step is needed, the network tries to allocate the
same instance to the two literals that need to cancel each other. If the syntactic
constraints on the literals permit such sharing of an instance, then the attempt
to share the instance is successful and a unification occurs (occur check is done
implicitly since the matrix NEST allows the only finite trees to be represented).

Minimizing the violation of soft constraints: Among the valid proofs some
are preferable to others. By means of soft constraints and optimization it is possible
to encourage the network to search for preferred proofs. Theorem-proving thus is
viewed as a constraint optimization problem. A weight may be assigned to each
of the constraints [Pinkas 91c) and the network tries to minimize the weighted sum
of the violated constraints, so that the set of the optimized solutions is exactly the
set of the preferred proofs. For example, preference of proofs with most general
unification is obtained by assignment of small penalties (negative bias) to every
binding of a function to a position of another instance (in NEST). Using similar
techniques, the network can be made to prefer shorter, more parsimonious or more
reliable proofs, low-cost plans or even more specific arguments as in nonmonotonic
reasonmg.

4 Summary

Given a finite set T of m clauses, where n is the number of different predicates,
functions and constants, and given also a bound k over the proof length, we can
generate a network that searches for a proof with length not longer then k, for
a clamped query Q. If a global minimum is found then an answer is given as to
whether there exists such a proof, and the proof (with MGU's) may be extracted
from the state of the visible units. Among the possible valid proofs the system
prefers some "better" proofs by minimizing the violation of soft constraints. The
concept of "better" proofs may apply to applications like planning (minimize the
cost), abduction (parsimony) and nonmonotonic reasoning (specificity).

In the propositional case the generated network is of O(k2 + km + kn) units and
O(k3 + km + kn) connections. For predica;te logic there are O(k3 + km + kn) units
and connections, and we need to add O(Pm) connections and hidden units, where
i is the complexity-level of the syntactic constraints [Pinkas 91j).

The results improve an earlier approach [Ballard 86]: There are no restrictions on
the rules allowed; every proof no longer than the bound is allowed; the network
is compact and the representation of bindings (unifications) is efficient; nesting of
functions and multiple uses of rules are allowed; only one relaxation phase is needed;
inconsistency is allowed in the knowledge base, and the query does not need to be
negated and pre-wired (it can be clamped during query time).

The architecture discussed has a natural fault-tolerance capability: When a unit
becomes faulty, it simply cannot assume a role in the proof, and other units are
allocated instead.

Acknowledgment: I wish to thank Dana Ballard, Bill Ball, Rina Dechter,
Peter Had dawy, Dan Kimura, Stan Kwasny, Ron Loui and Dave Touretzky for

224 Pinkas

helpful conunents.

References

[Anand an et al. 89] P. Anandan, S. Letovsky, E. Mjolsness, "Connectionist variable
binding by optimization," Proceedings of the 11th Cognitive Science
Society 1989.

[Ballard 86] D. H. Ballard "Parallel Logical Inference and Energy Minimization,"
Proceedings of the 5th National Conference on Artificial Intelligence,
Philadelphia, pp. 203-208, 1986.

[Bamden 91] J .A. Barnden, "Encoding complex symbolic data structures with some
unusual connectionist techniques," in J.A Barnden and J.B. Pollack,
Advances in Connectionist and Neural Computation Theory 1, High­
level connectionist models, Ablex Publishing Corporation, 1991.

[Derthick 88] M. Derthick "Mundane reasoning by parallel constraint satisfaction,"
PhD thesis, CMU-CS-88-182 Carnegie Mellon University, Sept. 1988

[Hinton, Sejnowski 86] G.E Hinton and T.J. Sejnowski, "Learning and re-learning
in Boltzman Machines," in J. L. McClelland and D. E. Rumelhart,
Parallel Distributed Processing: Explorations in The Microstructure
of Cognition I, pp. 282 - 317, MIT Press, 1986.

[Holldobler 90] S. Holldobler, "CHCL, a connectionist inference system for Horn
logic based on connection method and using limited resources," Inter­
national Computer Science Institute TR-90-042, 1990.

[Hopfield 84b] J. J. Hopfield "Neurons with graded response have collective com­
putational properties like those of two-state neurons," Proceedings of
the National Academy of Sciences 81, pp. 3088-3092, 1984.

[Peterson, Hartman 89] C. Peterson, E. Hartman, "Explorations of mean field the­
ory learning algorithm," Neural Networks t, no. 6, 1989.

[Pinkas 90b] G. Pinkas, "Energy minimization and the satisfiability of propositional
calculus," Neural Computation 9, no. 2, 1991.

[Pinkas 91c] G. Pinkas, "Propositional Non-Monotonic Reasoning and Inconsis­
tency in Synunetric Neural Networks," Proceedings of IlCAI, Sydney,
1991.

[Pinkas 91j] G. Pinkas, "First-order logic proofs using connectionist constraint re­
laxation," technical report, Department of Computer Science, Wash­
ington University, WUCS-91-S4, 1991.

[Shastri et al. 90] L. Shastri, V. Ajjanagadde, "From simple associations to sys­
tematic reasoning: A connectionist representation of rules, variables
and dynamic bindings," technical report, University of Pennsylvania,
Philadelphia, MS-CIS-90-0S, 1990.

[Smolensky 86] P. Smolensky, "Information processing in dynamic systems: Foun­
dations of harmony theory," in J.L.McClelland and D.E.Rumelhart,
Parallel Distributed Processing: Explorations in The Microstructure
of Cognition I , MIT Press, 1986.

