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Abstract 

"Best-first model merging" is a general technique for dynamically 
choosing the structure of a neural or related architecture while avoid­
ing overfitting. It is applicable to both leaming and recognition tasks 
and often generalizes significantly better than fixed structures. We dem­
onstrate the approach applied to the tasks of choosing radial basis func­
tions for function learning, choosing local affine models for curve and 
constraint surface modelling, and choosing the structure of a balltree or 
bumptree to maximize efficiency of access. 

1 TOWARD MORE COGNITIVE LEARNING 

Standard backpropagation neural networks learn in a way which appears to be quite differ­
ent from human leaming. Viewed as a cognitive system, a standard network always main­
tains a complete model of its domain. This model is mostly wrong initially, but gets 
gradually better and better as data appears. The net deals with all data in much the same 
way and has no representation for the strength of evidence behind a certain conclusion. The 
network architecture is usually chosen before any data is seen and the processing is much 
the same in the early phases of learning as in the late phases. 

Human and animalleaming appears to proceed in quite a different manner. When an organ­
ism has not had many experiences in a domain of importance to it, each individual experi­
ence is critical. Rather than use such an experience to slightly modify the parameters of a 
global model, a better strategy is to remember the experience in detail. Early in learning. an 
organism doesn't know which features of an experience are important unless it has a strong 
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prior knowledge of the domain. Without such prior knowledgeJts best strategy is to gener­
alize on the basis of a similarity measure to individual stored experiences. (Shepard, 1987) 
shows that there is a universal exponentially decaying form for this kind of similarity based 
generalization over a wide variety of sensory domains in several studied species. As expe­
riences accumulate, the organism eventually gets enough data to reliably validate models 
from complex classes. At this point the animal need 00 longer remember individual expe­
riences, but rather only the discovered generalities (eg. as rules). With such a strategy, it is 
possible for a system to maintain a measure of confidence in it its predictions while build­
ing ever more complex models of its environment. 

Systems based on these two types of learning have also appeared in the neural network, sta­
tistics and machine learning communities. In the learning literature one finds both "table­
lookup" or "memory-based" methods and ''parameter-fitting" methods. In statistics the dis­
linction is made between "non-parametric" and "parametric" methods. Table-lookup meth­
ods work by storing examples and generalize to new situations on the basis of similarity to 
the old ones. Such methods are capable of one-shot learning and have a measure of the ap­
plicability of their knowledge to new situations but are limited in their generalization capa­
bility. Parameter fitting models choose the parameters of a predetermined model to best fit 
a set of examples. They usually take longer to train and are susceptible to computational 
difficulties such as local maxima but can potentially generalize better by extending the in­
fluence of examples over the whole space. Aside from computational difficulties, their fun­
damental problem is overfitting, ie. having insufficient data to validate a particular 
parameter setting as useful for generalization. 

2 OVERFITTING IN LEARNING AND RECOGNITION 

There have been many recent results (eg. based on the Vapnik-Chervonenkis dimension) 
which identify the number of examples needed to validate choices made from specific para­
metric model families. We would like a learning system to be able to induce extremely 
complex models of the world but we don't want to have to present it with the enormous 
amount of data needed to validate such a model unless it is really needed. (Vapnik, 1982) 
proposes a technique for avoiding overfitling while allowing models of arbitrary complex­
ity. The idea is to start with a nested familty of model spaces, whose members contain ever 
more complex models. When the system has only a small amount of data it can only vali­
date models in in the smaller model classes. As more data arrives, however, the more com­
plex classes may be considered. If at any point a fit is found to within desired tolerances, 
however, only the amount of data needed by the smallest class containing the chosen model 
is needed. Thus there is the potential for choosing complex models without penalizing sit­
uations in which the model is simple. The model merging approach may be viewed in these 
terms except that instead of a single nested family, there is a widely branching tree of model 
spaces. 

Like learning, recognition processes (visual, auditory, etc.) aim at constructing models 
from data. As such they are subject to the same considerations regarding overfitling. Figure 
1 shows a perceptual example where a simpler model (a single segment) is perceptually 
chosen to explain the data (4 almost collinear dots) than a more complex model (two seg­
ments) which fits the data better. An intuitive explanations is that if the dots were generated 
by two segments, it would be an amazing coincidence that they are almost collinear, if it 
were generated by one, that fact is easily explained. Many of the Gestalt phenomena can be 
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considered in the same tenns. Many of the processes used in recognition (eg. segmentation, 
grouping) have direct analogs in learning and vice versa. 

• 
Is:. • • = _______ or 

• 

Figure 1: An example of Occam's razor in recognition. 

There has been much recent interest in the network community in Bayesian methods for 
model selection while avoiding overfilling (eg. Buntine and Weigend, 1992 and MacKay 
1992). Learning and recognition fit naturally together in a Bayesian framework. The Baye­
sian approach makes explicit the need for a prior distribution. The posterior distribution 
generated by learning becomes the prior distribution for recognition. The model merging 
process described in this paper is applicable to both phases and the knowledge representa­
tion it suggests may be used for both processes as well. 

There are at least three properties of the world that may be encoded in a prior distribution 
and have a dramatic effect on learning and recognition and are essential to the model merg­
ing approach. The continuity prior is that the world is geometric and unless there is contrary 
data a system should prefer continuous models over discontinuous ones. This prior leads to 
a wide variety of what may be called "geometric learning algorithms .. (Omohundro, 1990). 
The sparseness prior is that the world is sparsely interacting. This says that probable mod­
els naturally decompose into components which only directly affect one another in a sparse 
manner. The primary origin of this prior is that physical objects usually only directly affect 
nearby objects in space and time. This prior is responsible for the success of representations 
such as Markov random fields and Bayesian networks which encode conditional indepen­
dence relations. Even if the individual models consist of sparsely interacting components, 
it still might be that the data we receive for learning or recognition depends in an intricate 
way on all components. The locality prior prefers models in which the data decomposes 
into components which are directly affected by only a small number of model components. 
For example, in the learning setting only a small portion of the knowledge base will be rel­
evant to any specific situation. In the recognition setting, an individual pixel is detennined 
by only a small number of objects in the scene. In geometric settings, a localized represen­
tation allows only a small number of model parameters to affect any individual prediction. 

3 MODEL MERGING 

Based on the above considerations, an ideal learning or recognition system should model 
the world using a collection of sparsely connected, smoothly parameterized, localized mod­
els. This is an apt description of many of the neural network models currently in use. Baye­
sian methods provide an optimal means for induction with such a choice of prior over 
models but are computationally intractable in complex situations. We would therefore like 
to develop heuristic approaches which approximate the Bayesian solution and avoid over­
fitting. Based on the idealization of animal learning in the frrst section, we would like is a 
system which smoothly moves between a memory-based regime in which the models are 
the data into ever more complex parameterized models. Because of the locality prior, model 
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components only affect a subset of the data. We can therefore choose the complexity of 
components which are relevant to different portions of the data space according to the data 
which has been received there. This allows for reliably validated models of extremely high 
complexity in some regions of the space while other portions are modeled with low com­
plexity. If only a small number of examples have been seen in some region, these are simply 
remembered and generalization is based on similarity. As more data arrives, if regularities 
are found and there is enough data present to justify them. more complex parameterized 
models are incorpoolted. 

There are many possible approaches to implementing such a strategy. We have investigated 
a particular heuristic which can be made computationally efficient and appears to work well 
in a variety of areas. The best-first model merging approach is applicable in a variety of sit­
uations in which complex models are constructed by combining simple ones. The idea is to 
improve a complex model by replacing two of its component models by a single model. 
This "merged" model may be in the same family as the original components. More inter­
estingly. because the combined data from the merged components is used in determining 
the parameters of the merged model, it may come from a larger parameterized class. The 
critical idea is to never allow the system to hypothesize a model which is more complex 
than can be justified by the data it is based on. The "best-first" aspect is to always choose 
to merge the pair of models which decrease the likelihood of the data the least. The merging 
may be stopped according to a variety of criteria which are now applied to individual model 
components rather than the entire model. Examples of such criteria are those based on 
cross-validation, Bayesian Occam factors, VC bounds, etc. In experiments in a variety of 
domains, this approach does an excellent job of discovering regularities and allocating 
modelling resources efficiently. 

3 MODEL MERGING VS. K·MEANS FOR RBF'S 

Our rust example is the problem of choosing centers in radial basis function networks for 
approximating functions. In the simplest approach, a radial basis function (eg. a Gaussian) 
is located at each training input location. The induced function is a linear combination of 
these basis functions which minimizes the mean square error of the training examples. Bet­
ter models may be obtained by using fewer basis functions than data points. Most work on 
choosing the centers of these functions uses a clustering technique such as k-means (eg. 
Moody and Darken, 1989). This is reasonable because it puts the representational power of 
the model in the regions of highest density where errors are more critical. It ignores the 
structure of the modelled function, however. The model merging approach starts with a ba­
sis function at each training point and successively merges pairs which increase the training 
error the least. We compared this approach with the k-means approach in a variety of cir­
cumstances. 

Figure 2 shows an example where the function on the plane to be learned is a sigmoid in x 
centered at 0 and is constant in y. Thus the function varies most along the y axis. The data 
is drawn from a Gaussian distribution which is centered at (-.5,0). 21 training samples were 
drawn from this distribution and from these a radial basis function network with 6 Gaussian 
basis functions was learned. The X's in the figure show the centers chosen by k-means. As 
expected, they are clustered near the center fo the Gaussian source distribution. The trian­
gles show the centers chosen by best-rust model merging. While there is some tendency to 
focus on the source center, there is also a tendency to represent the region where the mod­
elled function varies the most. The training error is over 10 times less with model merging 
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and the test error 00 an independent test set is about 3 times lower. These results were typ­
ical in variety of test runs. This simple example shows one way in which underlying struc­
tme is natmally discovered by the merging technique. 
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Figure 2: Radial basis function centers in two dimensions chosen by model 
merging and by k-means. The dots show the 21 training samples. The x's are 
the centers chosen by k-means, the triangles by model merging. The training 

error was .008098 for k-means and .000604 for model merging. The test error 
was .012463 for k-means and .004638 for model merging. 

4 APPROXIMATING CURVES AND SURFACES 

As a second intuitive example, consider the problem of modelling a curve in the plane by 
a combination of straight line segments. The error function may be taken as the mean 
square error over each curve point to the nearest segment point A merging step in this case 
consists of replacing two segments by a single segment We always choose that pair such 
that the merged segment increases the emr the least. Figure 3 shows the approximations 
generated by this strategy. It does an excellent job at identifying the essentially linear por­
tions of the curve and puts the boundaries between component models at the "comers". The 
corresponding "top-down" approach would start with a single segment and repeatedly split 
it This approach sometimes has to make decisions too early and often misses the comers 
in the curve. While not shown in the figure, as repeated mergings take place, more data is 
available for each segment This would allow us to use more complex models than linear 
segments such as Bezier curves. It is possible to reliably induce a representation which is 
linear in some portions and higher order in others. Such models potentially have many pa­
rameters and would be subject to overfitting if they were learned directly rather than by go­
ing through merge steps. 

Exactly the same strategy may be applied to modelling higher-dimensional constraint sur­
faces by hyperplanes or functions by piecewise linear portions. The model merging ap-
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proach naturally complements the efficient mapping and constraint surface representations 
described in (Omohundro, 1991) based on bumptrees. 

Error=1 Error=2 Error=5 Error=10 Error=20 

Figure 3: Approximation of a curve by best-rust merging of segment models. The top row 
shows the endpoints chosen by the algorithm at various levels of allowed error. The 

bottom row shows the corresponding approximation to the curve. 

Notice, in this example, that we need only consider merging neighboring segments as the 
increased error in merging non-adjoinging segments would be too great This imposes a lo­
cality on the problem which allows for extremely efficient computation. The idea is to 
maintain a priority queue with all potential merges on it ordered by the increase in error 
caused by the merge. This consists of only the neighboring pairs (of which there are n-l if 
there are n segments). The top pair on the queue is removed and the merge operation it rep­
resents is performed if it doesn't violate the stopping critera. The other potential merge 
pairs which incorporated the merged segments must be removed from the queue and the 
new possible mergings with the generated segment must be inserted (alternatively, nothing 
need be removed and each pair is checked for viability when it reaches the top of the 
queue). The neighborhood structure allows each of the operations to be performed quickly 
with the appropriate data structures and the entire merging process takes a time which is 
linear (or linear times logarithmic) in the number of component models. Complex time­
varying curves may easily be processed in real time on typical workstations. In higher di­
mensions. hierarchical geometric data structures (as in Omohundro. 1987, 1990) allow a 
similar reduction in computation based on locality. 
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S BALLTREE CONSTRUCTION 

The model merging approach is applicable to a wide variety of adaptive structures. The 
"balItree" structure described in (Omohundro. 1989) provides efficient access to regions in 
geometric spaces. It consists of a nested hiernrchy of hyper-balls surrounding given leaf 
balls and effICiently supports querries which test for intersection. inclusion. or nearness to 
a leaf ball. The balItree construction algorithm itself provides an example of a best-first 
merge approach in a higher dimensional space. To detennine the best hierarchy we can 
merge the leaf balls pairwise in such a way that the total volume of all the merged regions 
is as small as possible. The figure compares the quality of balltrees constructed using best­
flJ'St merging to those constructed using top-down and incremental algorithms. As in other 
domains. the top-down approach has to make major decisions too early and often makes 
suboptimal choices. The merging approach only makes global decisions after many local 
decisions which adapt well to the structure. 
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Figme 4: Balltree error as a function of number of balls for the top-down. incremental. and 
best-fust merging construction methods. Leaf balls have uniformly distributed centers in 

5 dimensions with radii uniformly distributed less than .1. 

6 CONCLUSION 

We have described a simple but powerful heuristic for dynamically building models for 
both learning and recognition which constructs complex models that adapt well to the un­
derlying structure. We presented three different examples which only begin to touch on the 
possibilities. To hint at the broad applicability, we will briefly describe several other appli­
cations we are currently examining. 

In (Omohundro. 1991) we presented an efficient structure for modelling mappings based 
on a collection of local mapping models which were combined according to a partition of 
unity formed by "influence functions" associated with each model. This representation is 
very flexible and can be made computationally efficient. While in the experiments of that 
paper, the local models were affme functions (constant plus linear). they may be chosen 
from any desired class. The model merging approach builds such a mapping representation 
by successively merging models and replacing them with a new model whose influence 
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function extends over the range of the two original influence functions. Because it is based 
on more data, the new model can be chosen from a larger complexity class of functions than 
the originals. 

One of the most fundamental inductive tasks is density estimation. ie. estimating a proba­
blity distribution from samples drawn from it. A powerful standard technique is adaptvie 
kernel estimation in which a nonnalized Gaussian (or other kernel) is placed at each sample 
point with a width determined by the local sample density (Devroye and Gyorfi. 1985). 
Model merging can be applied to improve the generalization performance of this approach 
by choosing successively more complex component densities once enough data has accu­
mulated by merging. For example. consider a density supported on a curve in a high dimen­
si0l13l space. Initially the estimate will consist of radially-symmetric Gaussians at each 
sample point. After successive mergings, however, the one-dimensional linear structure 
can be discovered (and the Gaussian components be chosen from the larger class of extend­
ed Gaussians) and the generalization dramatically improVed. 

Other natural areas of application include inducing the structure of hidden Markov models. 
stochastic context-free grammars, Markov random fields. and Bayesian networks. 
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