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Abstract 

This paper briefly describes an artificial neural network for preattentive 
visual processing. The network is capable of determiuing image motioll in 
a type of stimulus which defeats most popular methods of motion detect.ion 
- a subset of second-order visual motion stimuli known as drift-balanced 
stimuli(DBS). The processing st.ages of the network described in this paper 
are integratable into a model capable of simultaneous motion extractioll. 
edge detection, and the determination of occlusion. 

1 INTRODUCTION 

Previous methods of motion detection have generally been based on one of 
two underlying approaches: correlation; and gradient-filter. Probably the best 
known example of the correlation approach is th(! Reichardt movement detEctor 
[Reiehardt 1961]. The gradient-filter (GF) approach underlies the work of AdElson 
and Bergen [Adelson 1985], and Heeger [Heeger L9H8], amongst others. 

These motion-detecting methods eannot track DBS, because DBS Jack essential 
componellts of information needed by such methods. Both the correlation and 
GF approaches impose constraints on the input stimuli. Throughout the image 
sequence, correlation methods require information that is spatiotemporally corre­
latable; and GF motion detectors assume temporally constant spatial gradi,'nts. 

"Current address: Experimental Psychology, School of Biological Sciences, Sussex 
University. 
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The network discussed here does not impose such constraints. Instead, it extracts 
motion energy and exploits the spatial coherence of movement (defined more for­
mally in the Gestalt theory of common fait [Koffka 1935]) to achieve tracking. 

The remainder of this paper discusses DBS image sequences, then correlation meth­
ods, then GF methods in more detail, followed by a qualitative description of this 
network which can process DBS. 

2 SECOND-ORDER AND DRIFT-BALANCED STIMULI 

There has been a lot of recent interest in second-order visual stimuli , and DBS in 
particular ([Chubb 1989, Landy 1991]). DBS are stimuli which give a clear percept 
of directional motion, yet Fourier analysis reveals a lack of coherent motion energy, 
or energy present in a direction opposing that of the displacement (hence the term 
'drift-balanced '). Examples of DBS include image sequences in which the contrast 
polarity of edges present reverses between frames. 

A subset of DBS, which are also processpd by the network, are known as micro­
balanced stimuli (MBS). MBS cont,ain no correlatable features and are drift­
balanced at all scales. The MBS image sequences used for this work were created 
from a random-dot image in which an area is successively shifted by a constant 
displacement between each frame and sim ultaneously re-randomised. 

3 EXISTING METHODS OF MOTION DETECTION 

3.1 CORRELATION METHODS 

Correlation methods perform a local cross-correlation in image space: the matching 
of features in local neighbourhoods (depending upon displacement/speed) between 
image frames underlies the motion detection. Examples of this method include 
[Van Santen 1985J. Most correlation models suffer from noise degradation in that 
any noise features extracted by the edge detection are available for spurious corre­
lation . 

There has been much recent debate questioning the validity of correlation methods 
for modelling human motion detection abilit.ies. In addition to DBS, there is also 
increasing psychophysical evidence ([Landy 1991, Mather 1991]) which correlation 
methods cannot account for. 

These factors suggest that correlation techniques are not suitable for low-level mo­
tion processing where no information is available concerning what is moving (as 
with MBS). However, correlation is a more plausible method when working with 
higher level constructs such as tracking in model-based vision (e.g . [Bray 1990]), 

3.2 GRADIENT-FILTER (GF) METHODS 

GF methods use a combination of spatial filtering to determine edge positions and 
temporal filtering to determine whether such edges are moving. A common assump­
tion used by G F methods is that spatial gradients are constant. A recent method by 
Verri [Verri 1990], for example, argu es that flow det.ection is based upon the notion 
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Figure 1: The Network (Schematic) 

of tracking spatial gradient magnitude and/or direction, and that any variation in 
the spatial gradient is due to some form of motion deformation - i.e. rotation, 
expansion or shear. Whilst for scenes containing smooth surfaces this is a valid 
approximation, it is not the case for second-order stimuli such as DBS. 

4 THE NETWORK 

A simplified diagram illustrating the basic structure of the network (based upon 
earlier work ([Tunley 1990, Tunley 1991a, Tunley 1991b]) is shown in Figure 1 
( the edge detection stage is discussed elsewhere ([Tunley 1990, Tunley 1991 b, 
Tunley 1992]). 

4.1 INPUT RECEPTOR UNITS 

The units in the input layer respond to rectified local changes in image intensity 
over time. Each unit has a variable adaption rate, resulting in temporal sensitivity 
- a fast adaption rate gives a high temporal filtering rate. The main advantages for 
this temporal averaging processing are: 

• Averaging removes the D.C. component of image intensity. This elimi­
nates problematic gain for motion in high brightness areas of the image. 
[Heeger 1988] . 

• The random nature of DBS/MBS generation cannot guarantee that each pixel 
change is due to local image motion. Local temporal averaging smooths the 
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moving regions, thus creating a more coherently structured input for the motion 
units. 

The input units have a pointwise rectifying response governed by an autoregressive 
filter of the following form: 

(1 ) 

where a E [0,1] is a variable which controls the degree of temporal filtering of the 
change in input intensity, nand n - 1 are successive image frames, and Rn and In 
are the filter output and input, respectively. 

The receptor unit responses for two different a values are shown in Figure 2. C\' can 
thus be used to alter the amount of motion blur produced for a particular frame 
rate, effectively producing a unit with differing velocity sensitivity. 

( a) (b) 

Figure 2: Receptor Unit Response: (a) a = 0.3; (b) a = 0.7. 

4.2 MOTION UNITS 

These units determine the coherence of image changes indicated by corresponding 
receptor units. First-order motion produces highly-tuned motion activity - i.e. a 
strong response in a particular direction - whilst second-order motion results in less 
coherent output. 

The operation of a basic motion detector can be described by: 

(2) 

w here !vI is the detector, (if, j') is a point in frame n at a distance d from (i, j), 
a point in frame n - 1, in the direction k. Therefore, for coherent motion (i.e. 
first-order), in direction k at a speed of d units/frame, as n ---- 00: 

(3) 
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The convergence of motion activity can be seen using an example. The stimulus 
sequence used consists of a bar of re-randomising texture moving to the right in 
front of a leftward moving background with the same texture (i.e. random dots). 
The bar motion is second-order as it contains no correlatable features, whilst the 
background consists of a simple first-order shifting of dots between frames. Fig­
ures 3, 4 and 5 show two-dimensional images of the leftward motion activity for the 
stimulus after 3,4 and 6 frames respectively. The background, which has coherent 
leftward movement (at speed d units/frame) is gradually reducing to zero whilst 
the microbalanced rightwards-moving bar, remains active. The fact that a non-zero 
response is obtained for second-order motion suggests, according to the definition 
of Chubb and Sperling [Chubb 1989], that first-order detectors produce no response 
to MBS, that this detector is second-order with regard to motion detection. 

Figure 3: Leftward Motion Response to Third Frame in Sequence. 

HfOL(tlyllmh~ .4) .. ' 

Figure 4: Leftward Motion Response to Fourth Frame. 

Hf Ol (llyrlnh ~. 6) 

Figure 5: Leftward Motion Response to Sixth Frame. 

The motion units in this model are arranged on a hexagonal grid. This grid is 
known as a flow web as it allows information to flow, both laterally between units 
of the same type, and between the different units in the model (motion, occlusion 
or edge). Each flow web unit is represented by three variables - a position (a, b) 
and a direction k, which is evenly spaced between 0 and 360 degrees. In this model 
each k is an integer between 1 and kmax - the value of kmax can be varied to vary 
the sensitivity of the units. 

A way of using first-order techniques to discriminate between first and second­
order motions is through the concept of coherence. At any point in the motion­
processed images in Figures 3-5, a measure of the overall variation in motion activity 
can be used to distinguish between the motion of the micro-balanced bar and its 
background. The motion energy for a detector with displacement d, and orientation 
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k, at position (a, b), can be represented by Eabkd. For each motion unit, responding 
over distance d, in each cluster the energy present can be defined as: 

E _ mink(Mabkd) 
abkdn - AI 

abkd 
(4) 

where mink(xk) is the minimum value of x found searching over k values. If motion 
is coherent, and of approximately the correct speed for the detector M, then as 
n -+ 00: 

(5) 

where km is in the actual direction of the motion. In reality n need only approach 
around 5 for convergence to occur. Also, more importantly, under the same conver­
gence conditions: 

(6) 

This is due to the fact that the minimum activation value in a group of first-order 
detectors at point (a, b) will be the same as the actual value in the direction, km . 

By similar reasoning, for non-coherent motion as n -+ 00: 

Eabkdn - 1 'Vk (7) 

in other words there is no peak of activity in a given direction . The motion energy 
is ambiguous at a large number of points in most images, except at discontinuities 
and on well-textured surfaces. 

A measure of motion coherence used for the motion units can now be defined as: 

Mc( abkd) = . Eabkd 
",", k max E 
L...k=l abkd 

(8) 

For coherent motion in direction km as n -+ 00: 

(9) 

Whilst for second-order motion, also as n - 00: 

(10) 

Using this approach the total Me activity at each position - regardless of coherence, 
or lack of it - is unity. Motion energy is the same in all moving regions, the difference 
is in the distribution, or tuning of that energy. 

Figures 6, 7 and 8 show how motion coherence allows the flow web structure to 
reveal the presence of motion in microbalanced areas whilst not affecting the easily 
detected background motion for the stimulus. 
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Figure 6: Motion Coherence Response to Third Frame 

Figure 7: Motion Coherence Response to Fourth Frame 

Figure 8: Motion Coherence Response to Sixth Frame 

4.3 OCCLUSION UNITS 

These units identify discontinuities in second-order motion which are vitally im­
portant when computing the direction of that motion . They determine spatial and 
temporal changes in motion coherence and can process single or multiple motions at 
each image point . Established and newly-activated occlusion units work, through 
a gating process, to enhance continuously-displacing surfaces, utilising the concept 
of visual inertia. 

The implementation details of the occlusion stage of this model are discussed else­
where [Tunley 1992], but some output from the occlusion units to the above second­
order stimulus are shown in Figures 9 and 10. The figures show how the edges of 
the bar can be determined. 
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Figure 9: Occluding Motion Information: Occlusion activity produced by an in­
crease in motion coherence activity. 
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Figure 10: Occluding Motion Information: Occlusion activity produced by a de­
crease in motion activity at a point. Some spurious activity is produced due to the 
random nature of the second-order motion information. 
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Abstract 

We have constructed a recurrent network that stabilizes images of a moving 
object on the retina of a simulated eye. The structure of the network 
was motivated by the organization of the primate visual target tracking 
system. The basic components of a complete target tracking system were 
simulated, including visual processing, sensory-motor interface, and motor 
control. Our model is simpler in structure, function and performance than 
the primate system, but many of the complexities inherent in a complete 
system are present. 
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Figure 1: The overall structure of the visual tracking model. 

1 Introduction 

The fovea of the primate eye has a high density of photoreceptors. Images that fall 
within the fovea are perceived with high resolution. Perception of moving objects 
poses a particular problem for the visual system. If the eyes are fixed a moving 
image will be blurred. When the image moves out the of the fovea, resolution 
decreases. By moving their eyes to foveate and stabilize targets, primates ensure 
maximum perceptual resolution. In addition, active target tracking simplifies other 
tasks, such as spatial localization and spatial coordinate transformations (Ballard, 
1991). 

Visual tracking is a feedback process, in which the eyes are moved to stabilize and 
foveate the image of a target. Good visual tracking performance depends on accu­
rate estimates of target velocity and a stable feedback controller. Although many 
visual tracking systems have been designed by engineers, the primate visual tracking 
system has yet to be matched in its ability to perform in complicated environments, 
with unrestricted targets, and over a wide variety of target trajectories. The study 
of the primate oculomotor system is an important step toward building a system 
that can attain primate levels of performance. The model presented here can accu­
rately and stably track a variety of targets over a wide range of trajectories and is 
a first step toward achieving this goal. 

Our model has four primary components: a model eye, a visual processing net­
work, a motor interface network, and a motor control network (see Figure 1). The 
model eye receives a sequence of images from a changing visual world, synthetically 
rendered, and generates a time-varying output signal. The retinal signal is sent to 
the visual processing network which is similar in function to the motion processing 
areas of the visual cortex. The visual processing network constructs a distributed 
representation of image velocity. This representation is then used to estimate the 
velocity of the target on the retina. The retinal velocity of the target forms the in­
put to the motor control network that drives the eye. The eye responds by rotating, 
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Figure 2: The structure of a motion energy unit. Each space-time separable unit 
has a receptive field that covers 16 pixels in space and 16 steps in time (for a total 
of 256 inputs). The shaded triangles denote complete projections. 

which in turn affects incoming retinal signals. 

If these networks function perfectly, eye velocity will match target velocity. Our 
model generates smooth eye motions to stabilize smoothly moving targets. It makes 
no attempt to foveate the image of a target. In primates, eye motions that foveate 
targets are called saccades. Saccadic mechanisms are largely separate from the 
smooth eye motion system (Lisberger et. al. 1987). We do not address them here. 

In contrast with most engineered systems, our model is adaptive. The networks 
used in the model were trained using gradient descent l . This training process 
circumvented the need for a separate calibration of the visual tracking system. 

2 Visual Processing 

INetwork simulations were carried out with the SN2 neural network simulator. 
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The middle temporal cortex (area MT) contains cells that are selective for the 
direction of visual motion. The neurons in MT are organized into a retinotopic 
map and small lesions in this area lead to selective impairment of visual tracking 
in the corresponding regions of the visual field (Newsome and Pare, 1988). The 
visual processing networks in our model contain directionally-selective processing 
units that are arranged in a retinotopic map. The spatio-temporal motion energy 
filter of Adelson and Bergen (Adelson and Bergen, 1985) has many of the proper­
ties of directionally-selective cortical neurons; it is used as the basis for our visual 
processing network. We constructed a four layer time-delay neural network that 
implements a motion energy calculation. 

A single motion-energy unit can be constructed from four intermediate units hav­
ing separable spatial and temporal filters. Adelson and Bergen demonstrate that 
two spatial filters (of even and odd symmetry) and two temporal filters (temporal 
derivatives for fast and slow speeds) are sufficient to detect motion. The filters 
are combined to construct 4 intermediate units which project to a single motion 
energy unit. Because the spatial and temporal properties of the receptive field are 
separable, they can be computed separately and convolved together to produce the 
final output. The temporal response is therefore the same throughout the extent of 
the spatial receptive field. 

In our model, motion energy units are implemented as backpropagation networks. 
These units have a receptive field 16 pixels wide over a 16 time step window. Because 
the input weights are shared, only 32 parameters were needed for each space-time 
separable unit. Four space-time separable units project through a 16 unit combi­
nation layer to the output unit (see Figure 2). The entire network can be trained 
to approximate a variety of motion-energy filters. 

We trained the motion energy network in two different ways: as a single multilayered 
network and in stages. Staged training proceded first by training intermediate units, 
then, with the intermediate units fixed, by training the three layer network that 
combines the intermediate units to produce a single motion energy output. The 
output unit is active when a pattern in the appropriate range of spatial frequencies 
moves through the receptive field with appropriate velocity. Many such units are 
required for a range of velocities, spatial frequencies, and spatial locations. We 
use six different types of motion energy units - each tuned to a different temporal 
frequency - at each of the central 48 positions of a 64 pixel linear retina. The 6 
populations form a distributed, velocity-tuned representation of image motion for 
a total of 288 motion energy units. 

In addition to the motion energy filters, static spatial frequency filters are also 
computed and used in the interface network, one for each band and each position 
for a total of 288 units. 

We chose an adaptive network rather than a direct motion energy calculation be­
cause it allows us to model the dynamic nature of the visual signal with greater 
:flexibility. However, this raises complications regarding the set of training images. 
Assuming 5 bits of information at each retinal position, there are well over 10 to 
the 100th possible input patterns. We explored sine waves, random spots and a 
variety of spatial pre-filters, and found low-pass filtered images of moving random 
spots worked best. Typically we began the training process from a plausible set of 
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weights, rather than from random values, to prevent the network from settling into 
an initial local minima. Training proceeded for days until good performance was 
obtained on a testing set. 

Krauzlis and Lisberger (1989) have predicted that the visual stimulus to the visual 
tracking system in the brain contains information about the acceleration and im­
pulse of the target as well as the velocity. Our motion energy networks are sensitive 
to target acceleration, producing transients for accelerating stimuli. 

3 The Interface Network 

The function of the interface is to take the distributed representation of the image 
motion and extract a single velocity estimate for the moving object. We use a 
relatively simple method that was adequate for tracking single objects without other 
moving distractolS. The activity level of a single motion energy unit is ambiguous. 
First, it is necessary for the object to have a feature that is matched to the spatial 
frequency ba.ndpass of the motion energy unit. Second, there is an a.llay of units 
for each spatial frequency and the object will stimulate only a few of these at any 
given time. For instance, a large white object will have no features in its interior; a 
unit with its receptive field located in the interior can detect no motion. Conversely, 
detectors with receptive fields on the border between the object and the background 
will be strongly stimulated. 

We use two stages of processing to extract a velocity. In the first stage, the motion 
energy in each spatial frequency band is estimated by summing the outputs of the 
motion energy filters across the retina weighted by the spatial frequency filter at 
each location. The six populations of spatial frequency units each yield one value. 
Next, a 6-6-1 feedforward network, trained using backpropagation, predicts target 
velocity from these values. 

4 The Motor Control Network 

In comparison with the visual processing network, the motor control network is quite 
small (see Figure 3). The goal of the network is to move the eye to stabilize the 
image of the object. The visual processing and interface networks convert images 
of the moving target into an estimate for the retinal velocity of the target. This 
retinal velocity can be considered a motor error. One approach to reducing this 
error is a simple proportional feedback controller, which drives the eye at a velocity 
proportional to the error. There is a large, 50-100 ms delay that occurs during 
visual processing in the primate visual system. In the presence of a large delay a 
proportional controller will either be inaccurate or unstable. For this reason simple 
proportional feedback is not sufficient to control tracking in the primate. Tracking 
can be made stable and accurate by including an internal positive feedback pathway 
to prevent instability while preserving accuracy (Robinson, 1971). 

The motor control network was based on a model of the primate visual tracking 
motor control system by Lisberger and Sejnowski (1992). This recurrent artificial 
neural network includes both the smooth visual tracking system and the vestibulo­
ocular system, which is important for compensating head movements. We use a 
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Figure 3: The structure of the recurrent network. Each circle is a unit. Units within 
a box are not interconnected and all units between boxes were fully interconnected 
as indicated by the arrows. 

simpler version of that model that does not have vestibular inputs. The network is 
constructed from units with continuous smooth temporal responses. The state of a 
unit is a function of previous inputs and previous state: 

Bj(t + ~t) = (1 - T~t)Bj(t) + IT~t 

where Bj(t) is the state of unit j at time t, T is a time constant and I is the 
sigmoided sum of the weighted pre-synaptic activities. The resulting network is 
capable of smooth responses to inputs. 

The motor control network has 12 units, each with a time constant of 5 ms (except 
for a few units with longer delay). There is a time delay of 50 ms between the 
interface network and control network. (see Figure 3). The input to the network 
is retinal target velocity, the output is eye velocity. The motor control network is 
trained to track a target in the presence of the visual delay. 

The motor control network contains a positive feedback loop that is necessary to 
maintain accurate tracking even when the error signal falls to zero. The overall 
control network also contains a negative feedback loop since the output of the net­
work affects subsequent inputs. The gradient descent optimization procedure uses 
the relationship between the output and the input during training-this relation­
ship can be considered a model of the plant. It should be possible to use the same 
approach with more complex plants. 

The control network was trained with the visual processing network frozen. A 
training example consists of an object trajectory and the goal trajectory for the 
eye. A standard recurrent network training paradigm is used to adjust the weights 
to minimize the error between actual outputs and desired outputs for step changes 
in target velocity. 
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Figure 4: Response of the eye to a step in target velocity of 30 degrees per second. 
The solid line is target velocity, the dashed line is eye velocity. This experiment 
was performed with a target that did not appear in the training set. 

5 Performance 

After training the network on a set of trajectories for a single target, the tracking 
performance was equally good on new targets. TYacking is accurate and stable -
with little tendency to ring (see Figure 4). This good performance is surprising in 
the presence of a 50 millisecond delay in the visual feedback signal2 • Stable tracking 
is not possible without the positive internal feedback loop in the model (eye velocity 
signal to the flocculus in Figure 3). 

6 Limitations 

The system that we have designed is a relatively small one having a one-dimensional 
retina only 64 pixels wide. The eye and the target can only move in one dimension­
along the length of the retina. The visual analysis that is performed is not, however, 
limited to one dimension. Motion energy filters are easily generalized to a two­
dimensional retina. Our approach should be extendable to the two-dimensional 
tracking problem. 

The backgrounds of images that we used for tracking were featureless. The cur­
rent system cannot distinguish target features from background features. Also, the 
interface network was designed to track a single object in the absence of moving 
distractors. The next step is to expand this interface to model the attentional 
phenomena observed in primate tracking, especially the process of initial target 

2We selected time constants, delays, and sampling rates throughout the model to 
roughly approximate the time course of the primate visual tracking response. The model 
runs on a workstation taking approximately thirty times real-time to complete a processing 
step. 
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acquisition. 

7 Conclusion 

In simulations, our eye tracking model performed well. Many additional difficulties 
must be addressed, but we feel this system can perform well under real-world real­
time constraints. Previous work by Lisberger and Sejnowski (1992) demonstrates 
that this visual tracking model can be integrated with inertial eye stabilization-the 
vestibulo-ocular reflex. Ultimately, it should be possible to build a physical system 
using these design principles. 

Every component of the system was designed using network learning techniques. 
The visual processing, for example, had a variety of components that were trained 
separately and in combinations. The architecture of the networks were based on 
the anatomy and physiology of the visual and oculomotor systems. This approach 
to reverse engineering is based on the existing knowledge of the flow of information 
through the relevant brain pathways. 

It should also be possible to use the model to develop and test theories about the 
nature of biological visual tracking. This is just a first step toward developing a 
realistic model of the primate oculomotor system, but it has already provided useful 
predictions for the possible sites of plasticity during gain changes of the vestibulo­
ocular reflex (Lisberger and Sejnowski, 1992). 
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