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Abstract 

A board is described that contains the ANN A neural-network chip, and a 
DSP32C digital signal processor. The ANNA (Analog Neural Network 
Arithmetic unit) chip performs mixed analog/digital processing. The 
combination of ANNA with the DSP allows high-speed, end-to-end ex­
ecution of numerous signal-processing applications, including the prepro­
cessing, the neural-net calculations, and the postprocessing steps. The 
ANNA board evaluates neural networks 10 to 100 times faster than the 
DSP alone. The board is suitable for implementing large (million con­
nections) networks with sparse weight matrices. Three applications have 
been implemented on the board: a convolver network for slant detection 
of text blocks, a handwritten digit recognizer, and a neural network for 
recognition-based segmentation. 

1 INTRODUCTION 

Many researchers have built neural-network chips, but few chips have been installed 
in board-level systems, even though this next level of integration provides insights 
and advantages that can't be attained on a chip testing station. Building a board 
demonstrates whether or not the chip can be effectively integrated into the larger 
systems required for real applications. A board also exposes bottlenecks in the 
system data paths. Most importantly, a working board moves the neural-network 
chip from the realm of a research exercise, to that of a practical system, readily 
available to users whose primary interest is actual applications. An additional 
bonus of carrying the integration to the board level is that the chip designer can 
gain the user feedback that will assist in designing new chips with greater utility. 
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Figure 1: Block Diagram of the ANNA Board 
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The neurocomputer board contains a special purpose chip called ANN A (Boser 
et al., 1991), for the parallel evaluation of neuron functions (a squashing function 
applied to a weighted sum) and a general purpose digital signal processor, DSP32C. 
The board also contains interface and clock synchronization logic as well as 1 MByte 
of static memory, SRAM (see Fig. 1). Two version of this board with two different 
bus interfaces have been built: a double height VME board (see Fig. 2) and a 
PC/ AT board (see Fig. 3). 

The ANNA neural network chip is an ALU (Arithmetic and Logic Unit) special­
ized for neural network functions. It contains a 12-bit wide state-data input, a 
12-bit wide state-data output, a 12-bit wide weight-data input, and a 37-bit micro­
instruction input. The instructions that can be executed by the chip are the fol­
lowing (parameters are not shown): 

RFSH Write weight values from the weight-data input into the dynamic on-chip 
weight storage. 

SHIFT Shift on-chip barrel shifter to the left and load up to four new state values 
from state-data input into the right end of the shifter. 

STORE Transfer state vector from the shifter into the on-chip state storage and/or 
into the state-data latches of the arithmetic unit. 

CALC Calculate eight dot-products between on-chip weight vectors and the contents 
of the above mentioned data latches; subsequently evaluate the squashing func­
tion. 

OUT Transfer the results of the calculation to the state-data output. 
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Figure 2: ANNA Board with VME Bus Interface 

Figure 3: ANNA Board with PCI AT Bus Interface 
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Figure 4: Photo Micrograph of the ANNA Chip 

Some of the instructions (like SHIFT and CALC) can be executed in parallel. The 
barrel shifter at the input as well as the on-chip state storage make the ANN A 
chip very effective for evaluating locally-connected, weight-sharing networks such 
as feature extraction and time-delay neural networks (TDNN). 

The ANNA neural network chip, implemented in a 0.9/-lm CMOS technology, con­
tains 180,000 transistors on a 4.5 x 7 mm2 die (see Fig. 4). The chip implements 
4,096 physical synapses which can be time multiplexed in order to realize networks 
with many more than 4,096 connections. The resolution of the synaptic weights is 
6 bits and that of the states (input/output of the neurons) is 3 bits. Additionally, 
a 4-bit scaling factor can be programmed for each neuron to extend the dynamic 
range of the weights. The weight values are stored as charge packets on capacitors 
and are periodically refreshed by two on chip 6-bit D/ A converter. The synapses 
are realized by multiplying 3-bit D/ A converters (analog weight times digital state). 
The analog results of this multiplication are added by means of current summing 
and then converted back to digital by a saturating 3-bit A/D converter. Although 
the chip uses analog computing internally, all input/output is digital. This combines 
the advantages of the high synaptic density, the high speed, and the low power of 
analog with the ease of interfacing to a digital system like a digital signal processor 
(DSP). 

The 32-bit floating-point digital signal processor (DSP32C) on the same board 
runs at 40 MHz without wait states (100 ns per instruction) and is connected to 
1 MByte of static RAM. The DSP has several functions: (1) It generates the micro 
instructions for the ANNA chip. (2) It is responsible for accessing the pixel, feature, 
and weight data from the memory and then storing the results of the chip in the 
memory. (3) If the precision of the ANNA chip is not sufficient the DSP can do the 
calculations with 32-bit floating-point precision. (4) Learning algorithms can be run 
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on the DSP. (5) The DSP is useful as a pre- and post-processor for neural networks. 
In this way a whole task can be carried out on the board without exchanging 
intermediate results with the host. 

As shown by Fig. 1 ANNA instructions are supplied over the DSP address bus, while 
state and weight data is transferred over the data bus. This arrangement makes 
it possible to supply or store ANN A data and execute a micro instruction simul­
taneously, i.e., using only one DSP instruction. The ANNA clock is automatically 
generated whenever the DSP issues a micro instruction to the ANN A chip. 

3 PERFORMANCE 

Using a DSP for supplying micro instructions as well as accessing the data from the 
memory makes the board very flexible and fairly simple. Both data and instruction 
flow to and from the ANNA chip are under software control and can be programmed 
using the C or DSP32C assembly language. 

Because of DSP32C features such as one-instruction 32-bit memory-to-memory 
transfer with auto increment and overhead free looping, ANNA instruction se­
quences can be generated at a rate of approximately 5 MIPS. A similar rate of 
5 MByte/s is achieved for reading and writing ANNA data from and to the mem­
ory. 

The speed of the board depends on the application and how well it makes use 
of the chip's parallelism and ranges between 30 MC/s and 400 MC/s. For concrete 
examples see the section on Applications. Compared to the DSP32C which performs 
at about 3 MC/s (for sparsely connected networks) the board with the ANNA chip 
is 10 to 100 times faster. 

The speed of the board is not limited by the ANNA chip but by the above mentioned 
data rates. The use of a dedicated hardware sequencer will improve the speed by 
up to ten times. The board can thus be used for prototyping an application, before 
building more specialized hardware. 

4 SOFTWARE 

To make the board easily usable we implemented a LISP interpreter on the host 
computer (a SUN workstation) which allows us to make remote procedure calls 
(RPC) to the ANNA board. After starting the LISP interpreter on the host it will 
download the DSP object code to the board and start the main program on the 
DSP. Then, the DSP will transfer the addresses of all procedures that are available 
to the user to the LISP interpreter. From then on, all these procedures can be called 
as LISP functions of the form (==> anna procedure parameter{s) from the host. 
Parameters and return value are handled automatically by the LISP interpreter. 

Three ways of using the ANNA board are described. The first two methods do not 
require DSP programming; everything is controlled from the LISP interpreter. The 
third method requires DSP programming and results in maximum speed for any 
application. 
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l. The simplest way to use the board together with this LISP interpreter is to 
call existing library functions on the board. For example a neural network for 
recognizing handwritten digits can be called as follows: 

(==> anna down-weight weight-matrix) 
(setq class (==> anna down-ree-up digit-pattern» 

The first LISP function activates the down-weight function on the ANN A board 
that transfers the LISP matrix, weight-matrix, to the board. This function defines 
all the weights of the network and has to be called only once. The second LISP 
function calls the down-ree-up function which takes the digit-pattern (pixel image) 
as an input, downloads this pattern, runs the recognizer, and uploads the class 
number (0 ... 9). 

This method requires no knowledge of the ANN A or nsp instruction set. The 
library functions are fast since they have been optimized by the implementer. At 
the moment library functions for nonlinear convolution, character recognition, and 
testing are available. 

2. If a function which is not part of the library has to be implemented, an ANNA 
program must be written. A collection of LISP functions (ANNANAS), support the 
translation of symbolic ANNA program into micro code. The micro code is then 
run on the ANNA chip by means of a software sequencer implemented on the nsp. 
Assembling and running a simple ANNA program using ANNANAS looks like this: 

(anna-repeat 16) 
(anna-shift 4 0) 
(anna-store 0 'a 2) 
(anna-endrep) 
(anna-stop) 

(anna-run 0) 

REPEAT 16 
SHIFT 4,RO; 
STORE RO,A.L2; 

END REP 
STOP 

start of loop 
ANNA shift instruction 
ANNA store instruction 
end of loop 
end of program 

start sequencer 

In this way, all the features of the ANN A chip and board can be used without 
nsp programming. This mode is also helpful for testing and debugging ANN A 
programs. Beside the assembler, ANN AN AS also provides several monitoring and 
debugging tools. 

3. If maximum speed is imperative, an application specific sequencer has to be 
written (as opposed to the slower generic sequencer described above). To do this 
a nsp assembler and C compiler are required. A toolbox of assembly macros and 
C functions help implementing this sequencer. Besides the sequencer, pre- and 
post-processing software can also be implemented on the fast nsp hardware. After 
successfully testing the program it can be added to the library as a new function. 

5 APPLICATIONS 

5.1 CONVOLVER NETWORK 

In this application the ANNA chip is configured for 16 neurons with 256 synapses 
each. First, each of these neurons connect to the upper left 16 x 16 field of a 
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Table 1: Performance of the Recognizer. 

REJECT RATE 
IMPLEMENTATION ERROR RATE FOR 1 % ERROR 

Full Precision 
ANNA/DSP 

4.9% 9.1 % 

ANN A/DSP /Retraining 
5.3 ± 0.2% 
4.9±0.2% 

13.5± 0.8% 
11.5 ± 0.8% 
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5.3 RECOGNITION BASED SEGMENTATION 

Before individual digits can be passed to a recognizer as described in the previous 
section, they typically have to be isolated (segmented) from a string of characters 
(e.g. a ZIP code). When characters overlap, segmentation is a difficult problem 
and simple algorithms which look for connected components or histograms fail. 

A promising solution to this problem is to combine recognition and segmentation 
(Keeler et al., 1992, Matan et aI., 1992). For instance recognizers like the one 
described above can be replicated horizontally and vertically over the region of in­
terest. This will guarantee, that there is a recognizer centered over each character. 
It is crucial, however, to train the recognizer such that it rejects partial characters. 
Such a replicated version of the recognizer (at 31 times 6 locations) with approxi­
mately 2 million connections has been implemented on the ANN A board and was 
used to segment ZIP codes. 

6 CONCLUSION 

A board with a neural-network chip and a digital signal processor (DSP) has been 
built. Large pattern recognition applications have been implemented on the board 
giving a speed advantage of 10 to 100 over the DSP alone. 
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