
Induction of Finite-State Automata Using 
Second-Order Recurrent Networks 

Raymond L. Watrous 
Siemens Corporate Research 

755 College Road East, Princeton, NJ 08540 

Gary M. Kuhn 
Center for Communications Research, IDA 

Thanet Road, Princeton, NJ 08540 

Abstract 

Second-order recurrent networks that recognize simple finite state lan­
guages over {0,1}* are induced from positive and negative examples. Us­
ing the complete gradient of the recurrent network and sufficient training 
examples to constrain the definition of the language to be induced, solu­
tions are obtained that correctly recognize strings of arbitrary length. A 
method for extracting a finite state automaton corresponding to an opti­
mized network is demonstrated. 

1 Introduction 

We address the problem of inducing languages from examples by considering a set of 
finite state languages over {O, 1}* that were selected for study by Tomita (Tomita, 
1982): 

L1. 1* 

L2. (10)* 

L3. no odd-length O-string anywhere after an odd-length I-string 

L4. not more than 20's in a row 

L5. bit pairs, #01 's + #10's = 0 mod 2 
309 



310 Watrous and Kuhn 

L6. abs(#l's - #O's) = 0 mod 3 

L 7. 0*1*0*1* 

Tomita also selected for each language a set of positive and negative examples 
(summarized in Table 1) to be used as a training set. By a method of heuristic 
search over the space of finite state automata with up to eight states, he was able 
to induce a recognizer for each of these languages (Tomita, 1982). 

Recognizers of finite-state languages have also been induced using first-order re­
current connectionist networks (Elman, 1990; Williams and Zipser, 1988; Cleere­
mans, Servan-Schreiber and McClelland, 1989). Generally speaking, these results 
were obtained by training the network to predict the next symbol (Cleeremans, 
Servan-Schreiber and McClelland, 1989; Williams and Zipser, 1988), rather than 
by training the network to accept or reject strings of different .lengths. Several 
training algorithms used an approximation to the gradient (Elman, 1990; Cleere­
mans, Servan-Schreiber and McClelland, 1989) by truncating the computation of 
the backward recurrence. 

The problem of inducing languages from examples has also been approached using 
second-order recurrent networks (Pollack, 1990; Giles et al., 1990). Using a trun­
cated approximation to the gradient, and Tomita's training sets, Pollack reported 
that "none of the ideal languages were induced" (Pollack, 1990). On the other hand, 
a Tomita language has been induced using the complete gradient (Giles et al., 1991). 
This paper reports the induction of several Tomita languages and the extraction of 
the corresponding automata with certain differences in method from (Giles et al., 
1991). 

2 Method 

2.1 Architecture 

The network model consists of one input unit, one threshold unit, N state units and 
one output unit. The output unit and each state unit receive a first order connection 
from the input unit and the threshold unit. In addition, each of the output and state 
units receives a second-order connection for each pairing of the input and threshold 
unit with each of the state units. For N = 3, the model is mathematically identical 
to that used by Pollack (Pollack, 1990); it has 32 free parameters. 

2.2 Data Representation 

The symbols of the language are represented by byte values, that are mapped into 
real values between 0 and 1 by dividing by 255. Thus, the ZERO symbol is repre­
sented by octal 040 (0.1255). This value was chosen to be different from 0.0, which 
is used as the initial condition for all units except the threshold unit, which is set to 
1.0. The ONE symbol was chosen as octal 370 (0.97255). All strings are terminated 
by two occurrences of a termination symbol that has the value 0.0. 



Induction of Finite-State Automata Using Second-Order Recurrent Networks 311 

Grammatical Strings Ungrammatical Strings 

Language 
Length < 10 I Longer Strmgs 

Total Training In Training Set 
Length ::; 10 I Longer Strmgs 

Total Training In Training Set 
1 11 9 2036 8 
2 6 5 1 2041 10 
3 652 11 2 1395 11 1 
4 1103 10 1 944 7 2 
5 683 9 1364 11 1 
6 683 10 1364 11 1 
7 561 11 2 1486 6 2 

Table 1; Number of grammatical and ungrammatical strings oflength 10 or less for 
Tomita languages and number of those included in the Tomita training sets. 

2.3 Training 

The Tomita languages are characterized in Table 1 by the number of grammatical 
strings of length 10 or less (out of a total of 2047 strings). The Tomita training 
sets are also characterized by the number of grammatical strings of length 10 or 
less included in the training data. For completeness, the Table also shows the 
number of grammatical strings in the training set of length greater than 10. A 
comparison of the number of grammatical strings with the number included in the 
training set shows that while Languages 1 and 2 are very sparse, they are almost 
completely covered by the training data, whereas Languages 3-7 are more dense, and 
are sparsely covered by the training sets. Possible consequences of these differences 
are considered in discussing the experimental results. 

A mean-squared error measure was defined with target values of 0.9 and 0.1 for 
accept and reject, respectively. The target function was weighted so that error was 
injected only at the end of the string. 

The complete gradient of this error measure for the recurrent network was computed 
by a method of accumulating the weight dependencies backward in time (Watrous, 
Ladendorf and Kuhn, 1990). This is in contrast to the truncated gradient used 
by Pollack (Pollack, 1990) and to the forward-propagation algorithm used by Giles 
(Giles et al., 1991). 

The networks were optimized by gradient descent using the BFGS algorithm. A 
termination criterion of 10- 10 was set; it was believed that such a strict tolerance 
might lead to smaller loss of accuracy on very long strings. No constraints were set 
on the number of iterations. 

Five networks with different sets of random initial weights were trained separately 
on each of the seven languages described by Tomita using exactly his training sets 
(Tomita, 1982), including the null string. The training set used by Pollack (Pollack, 
1990) differs only in not including the null string. 

2.4 Testing 

The networks were tested on the complete set of strings up to length 10. Acceptance 
of a string was defined as the network having a final output value of greater than 



312 Watrous and Kuhn 

0.9 - T and rejection as a final value of less than 0.1 + T, where 0 < T < 0.4 is the 
tolerance. The decision was considered ambiguous otherwise. 

3 Results 

The results of the first experiment are summarized in Table 2. For each language, 
each network is listed by the seed value used to initialize the random weights. For 
each network, the iterations to termination are listed, followed by the minimum 
MSE value reached. Also listed is the percentage of strings of length 10 or less that 
were correctly recognized by the network, and the percentage of strings for which 
the decision was uncertain at a tolerance of 0.0. 

The number of iterations until termination varied widely, from 28 to 37909. There 
is no obvious correlation between number of iterations and minimum MSE. 

3.1 Language 1 

It may be observed that Language 1 is recognized correctly by two of the networks 
(seeds 72 and 987235) and nearly correctly by a third (seed 239). This latter network 
failed on the strings 19 and 110 , both of which were not in the training set. 

The network of seed 72 was further tested on all strings of length 15 or less and 
made no errors. This network was also tested on a string of 100 ones and showed no 
diminution of output value over the length of the string. When tested on strings of 
99 ones plus either an initial zero or a final zero, the network also made no errors. 
Another network, seed 987235, made no errors on strings of length 15 or less but 
failed on the string of 100 ones. The hidden units broke into oscillation after about 
the 30th input symbol and the output fell into a low amplitude oscillation near zero. 

3.2 Language 2 

Similarly, Language 2 was recognized correctly by two networks (seeds 89340 and 
987235) and nearly correctly by a third network (seed 104). The latter network 
failed only on strings of the form (10)*010, none of which were included in the 
training data. 

The networks that performed perfectly on strings up to length 10 were tested further 
on all strings up to length 15 and made no errors. These networks were also tested 
on a string of 100 alternations of 1 and 0, and responded correctly. Changing the 
first or final zero to a one caused both networks correctly to reject the string. 

3.3 The Other Languages 

For most of the other languages, at least one network converged to a very low 
MSE value. However, networks that performed perfectly on the training set did 
not generalize well to a definition of the language. For example, for Language 3, 
the network with seed 104 reached a MSE of 8 x 10- 10 at termination, yet the 
performance on the test set was only 78.31%. One interpretation of this outcome 
is that the intended language was not sufficiently constrained by the training set. 



Induction of Finite-State Automata Using Second-Order Recurrent Networks 313 

Language Seed Iterations MSE Accuracy Uncertainty 

72 28 0.0012500000 100.00 0.00 
104 95 0.0215882357 78.07 20.76 

1 239 8707 0.0005882353 99.90 0.00 
89340 5345 0.0266176471 66.93 0.00 

987235 994 0.0000000001 100.00 0.00 
72 5935 0.0005468750 93.36 4.93 

104 4081 0.0003906250 99.80 0.20 
2 239 807 0.0476171875 62.73 37.27 

89340 1084 0.0005468750 100.00 0.00 
987235 1("06 0.0001562500 100.00 0.00 

72 442 0.0149000000 47.09 33.27 
104 37909 0.0000000008 78.31 0.15 

3 239 9264 0.0087000000 74.60 11.87 
89340 8250 0.0005000000 73.57 0.00 

987235 5769 0.0136136712 50.76 23.94 
72 8630 0.0004375001 52.71 6.45 

104 60 0.0624326924 20.86 50.02 
4 239 2272 0.0005000004 55.40 9.38 

89340 10680 0.0003750001 60.92 15.53 
987235 324 0.0459375000 22.62 77.38 

72 890 0.0526912920 34.39 63.80 
104 368 0.0464772727 45.92 41.62 

5 239 1422 0.0487500000 31.46 36.93 
89340 2775 0.0271525856 46.12 22.52 

987235 2481 0.0209090867 66.83 2.49 
72 524 0.0788760972 0.05 99.95 

104 332 0.0789530751 0.05 99.95 
6 239 1355 0.0229551248 31.95 47.04 

89340 8171 0.0001733280 46.21 5.32 
987235 306 0.0577867426 37.71 24.87 

72 373 0.0588385157 9.38 86.08 
104 8578 0.0104224185 55.74 17.00 

7 239 969 0.0211073814 52.76 26.58 
89340 4259 0.0007684520 54.42 0.49 

987235 666 0.0688690476 12.55 74.94 

Table 2: Results of Training Three State-Unit Network from 5 Random Starts on 
Tomita.Languages Using Tomita Training Data 

In the case of Language 5, in no case was the MSE reduced below 0.02. We believe 
that the model is sufficiently powerful to compute the language. It is possible, 
however, that the power of the model is marginally sufficient, so that finding a 
solution depends critically upon the initial conditions. 



314 Watrous and Kuhn 

Seed Iterations MSE Accuracy Uncertainty 

72 215 0.0000001022 100.00 0.00 
104 665 0.0000000001 99.85 0.05 
239 205 0.0000000001 99.90 0.10 

89340 5244 0.0005731708 99.32 0.10 
987235 2589 0.0004624581 92.13 6.55 

Table 3: Results of Training Three State-Unit Network from 5 Random Starts on 
Tomita Language 4 Using Probabilistic Training Data (p=O.l) 

4 Further Experiments 

The effect of additional training data was investigated by creating training sets in 
which each string oflength 10 or less is randomly included with a fixed probability p. 
Thus, for p = 0.1 approximately 10% of 2047 strings are included in the training set. 
A flat random sampling of the lexicographic domain may not be the best approach, 
however, since grammaticality can vary non-uniformly. 

The same networks as before were trained on the larger training set for Language 
4, with the results listed in Table 3. 

Under these conditions, a network solution was obtained that generalizes perfectly 
to the test set (seed 72). This network also made no errors on strings up to length 15. 
However, very low MSE values were again obtained for networks that do not perform 
perfectly on the test data (seeds 104 and 239). Network 239 made two ambiguous 
decisions that would have been correct at a tolerance value of 0.23. Network 104 
incorrectly accepted the strings 000 and 1000 and would have correctly accepted 
the string 0100 at a tolerance of 0.25. Both networks made no additional errors 
on strings up to length 15. The training data may still be slightly indeterminate. 
Moreover, the few errors made were on short strings, that are not included in the 
training data. 

Since this network model is continuous, and thus potentially infinite state, it is per­
haps not surprising that the successful induction of a finite state language seems to 
require more training data than was needed for Tomita's finite state model (Tomita, 
1982). 

The effect of more complex models was investigated for Language 5 using a network 
with 11 state units; this increases the number of weights from 32 to 288. Networks 
of this type were optimized from 5 random initial conditions on the original training 
data. The results of this experiment are summarized in Table 4. By increasing the 
complexity of the model, convergence to low MSE values was obtained in every case, 
although none of these networks generalized to the desired language. Once again, 
it is possible that more data is required to constrain the language sufficiently. 

5 FSA Extraction 

The following method for extracting a deterministic finite-state automaton corre­
sponding to an optimized network was developed: 



Induction of Finite-State Automata Using Second-Order Recurrent Networks 315 

Seed Iterations MSE Accuracy Uncertainty 
72 1327 0.0002840909 53.00 11.87 

104 680 0.0001136364 39.47 16.32 
239 357 0.0006818145 61.31 3.32 

89340 122 0.0068189264 63.36 6.64 
987235 4502 0.0001704545 48.41 16.95 

Table 4: Results of Training Network with 11 State-Units from 5 Random Starts 
on Tomita Language 5 Using Tomita Training Data 

1. Record the response of the network to a set of strings. 

2. Compute a zero bin-width histogram for each hidden unit and partition each 
histogram so that the intervals between adjacent peaks are bisected. 

3. Initialize a state-transition table which is indexed by the current state and 
input symbol; then, for each string: 

(a) Starting from the NULL state, for each hidden unit activation vector: 
1. Obtain the next state label from the concatenation of the histogram 

interval number of each hidden unit value. 
ll. Record the next state in the state-transition table. If a transition is 

recorded from the same state on the same input symbol to two different 
states, move or remove hidden unit histogram partitions so that the two 
states are collapsed and go to 3; otherwise, update the current state. 

(b) At 'the end of the string, mark the current state as accept, reject or un­
certain according as the output unit is ~ 0.9, S; 0.1 or otherwise. If the . 
current state has already received a different marking, move or insert his­
togram partitions so that the offending state is subdivided and go to 3. 

If the recorded strings are processed successfully, then the resulting state-transition 
table may be taken as an FSA interpretation of the optimized network. The FSA 
may then be minimized by standard methods (Giles et al., 1991). If no histogram 
partition can be found such that the process succeeds, the network may not have a 
finite-state interpretation. 

As an approximation to Step 3, the hidden unit vector was labeled by the index of 
that vector in an initially empty set of reference vectors for which each component 
value was within some global threshold (B) of the hidden unit value. If no such 
reference vector was found, the observed vector was added to the reference set . The 
threshold B could be raised or lowered as states needed to be collapsed or subdivided. 

Using the approximate method, for Language 1, the correct and minimal FSA was 
extracted from one network (seed 72, B = 0.1). The correct FSA was also extracted 
from another network (seed 987235, B = 0.06), although for no partition of the 
hidden unit activation values could the minimal FSA be extracted. Interestingly, 
the FSA extracted from the network with seed 239 corresponded to 1 n for n < 8. 
Also, the FSA for another network (seed 89340, B = 0.0003) was nearly correct, 
although the string accuracy was only 67%; one state was wrongly labeled "accept" . 

For Language 2, the correct and minimal FSA was extracted from one network (seed 
987235, B = 0.00001). A correct FSA was also extracted from another network (seed 



316 Watrous and Kuhn 

89340, () = 0.0022), although this FSA was not minimal. 

For Language 4, a histogram partition was found for one network (seed 72) that 
led to the correct and minimal FSA; for the zero-width histogram, the FSA was 
correct, but not minimal. 

Thus, a correct FSA was extracted from every optimized network that correctly 
recognized strings of length 10 or less from the language for which it was trained. 
However, in some cases, no histogram partition was found for which the extracted 
FSA was minimal. It also appears that an almost-correct FSA can be extracted, 
which might perhaps be corrected externally. And, finally, the extracted FSA may 
be correct, even though the network might fail on very long strings. 

6 Conclusions 

We have succeeded in recognizing several simple finite state languages using second­
order recurrent networks and extracting corresponding finite-state automata. We 
consider the computation of the complete gradient a key element in this result. 

Acknowledgements 

We thank Lee Giles for sharing with us their results (Giles et al., 1991). 

References 

Cleeremans, A., Servan-Schreiber, D., and McClelland, J. (1989). Finite state au­
tomata and simple recurrent networks. Neural Computation, 1(3):372-381. 

Elman, J . L. (1990). Finding structure in time. Cognitive Science, 14:179-212. 

Giles, C. 1., Chen, D., Miller, C. B., Chen, H. H., Sun, G. Z., and Lee, Y. C. 
(1991). Second-order recurrent neural networks for grammatical inference. In 
Proceedings of the International Joint Conference on Neural Networks, vol­
ume II, pages 273-281. 

Giles, C. L., Sun, G. Z., Chen, H. H., Lee, Y. C., and Chen, D. (1990). Higher order 
recurrent networks and grammatical inference. In Touretzky, D. S., editor, 
Advances in Neural Information Systems 2, pages 380-387. Morgan Kaufmann. 

Pollack, J. B. (1990). The induction of dynamical recognizers. Technical Report 
90-JP-AUTOMATA, Ohio State University. 

Tomita, M. (1982). Dynamic construction of finite automata from examples us­
ing hill-climbing. In Proceedings of the Fourth International Cognitive Science 
Conference, pages 105-108. 

Watrous, R. L., Ladendorf, B., and Kuhn, G. M. (1990). Complete gradient opti­
mization of a recurrent network applied to /b/, /d/, /g/ discrimination. Jour­
nal of the Acoustical Society of America, 87(3):1301-1309. 

Williams, R. J. and Zipser, D. (1988). A learning algorithm for continually running 
fully recurrent neural networks. Technical Report ICS Report 8805, UCSD 
Institute for Cognitive Science. 


