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Abstract 

We present a distribution-free model for incremental learning when concepts vary 
with time. Concepts are caused to change by an adversary while an incremental 
learning algorithm attempts to track the changing concepts by minimizing the 
error between the current target concept and the hypothesis. For a single half­
plane and the intersection of two half-planes, we show that the average mistake 
rate depends on the maximum rate at which an adversary can modify the concept. 
These theoretical predictions are verified with simulations of several learning 
algorithms including back propagation. 

1 INTRODUCTION 

The goal of our research is to better understand the problem of learning when concepts are 
allowed to change over time. For a dichotomy, concept drift means that the classification 
function changes over time. We want to extend the theoretical analyses of learning to 
include time-varying concepts; to explore the behavior of current learning algorithms in the 
face of concept drift; and to devise tracking algorithms to better handle concept drift. In this 
paper, we briefly describe our theoretical model and then present the results of simulations 
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in which several tracking algorithms, including an on-line version of back-propagation, are 
applied to time-varying half-spaces. 

For many interesting real world applications, the concept to be learned or estimated is not 
static, i.e., it can change over time. For example, a speaker's voice may change due to 
fatigue, illness, stress or background noise (Galletti and Abbott, 1989), as can handwriting. 
The output of a sensor may drift as the components age or as the temperature changes. In 
control applications, the behavior of a plant may change over time and require incremental 
modifications to the model. 

Haussler, et al. (1987) and Littlestone (1989) have derived bounds on the number of mistakes 
an on-line learning algorithm will make while learning any concept in a given concept class. 

, However, in that and most other learning theory research, the concept is assumed to be fixed. 
Helmbold and Long (1991) consider the problem of concept drift, but their results apply to 
memory-based tracking algorithms while ours apply to incremental algorithms. In addition, 
we consider different types of adversaries and use different methods of analysis. 

2 DEFINITIONS 

We use much the same notation as most learning theory, but we augment many symbols 
with a subscript to denote time. As usual, X is the instance space and Xt is an instance drawn 
at time t according to afixed, ~rbitrary distribution Px. The function Ct : X ~ {O, I} is the 
active concept at time t, that is, at time t any instan~e is labeled according to Ct. The label 
of the instance is at = Ct(Xt). Each active concept C i is a member of the concept class C. A 
sequence of active concepts is denoted c. At any time t, the tracker uses an algorithm £ to 
generate a hypothesis Ct of the active concept. 

We use a symmetric distance function to measure the difference between two concepts: 
d(c, c') = Px[x : c(x) =1= c'(x)]. 

As we alluded to in the introduction, we distinguish between two types of tracking al­
gorithms. A memory-based tracker stores the most recent m examples and chooses a 
hypothesis based on those stored examples. Helmbold and Long (1991), for example, 
use an algorithm that chooses as the hypothesis the concept that minimizes the number 
of disagreements between cr(xt) and Ct(Xt). An incremental tracker uses only the previous 
hypothesis and the most recent examples to form the new hypothesis. In what follows, we 
focus on incremental trackers. 

The task for a tracking algorithm is, at each iteration t, to form a "good" estimate ct of the 
active concept Ct using the sequence of previous examples. Here "good" means that the 
probability of a disagreement between the label predicted by the tracker and the actual label 
is small. In the time-invariant case, this would mean that the tracker would incrementally 
improve its hypothesis as it collects more examples. In the time-varying case, however, we 
introduce an adversary whose task is to change the active concept at each iteration. 

Given the existence of a tracker and an adversary, each iteration of the tracking problem 
consists of five steps: (1) the adversary chooses the active concept Cr; (2) the tracker is 
given an unlabeled instance, Xr, chosen randomly according to Px; (3) the tracker predicts 
a label using the current hypothesis: at = Ct-l (xt); (4) the tracker is given the correct label 
at'= ct(xt); (5) the tracker forms a new hypothesis: ct = £(Ct-l, (xt,at)). 
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It is clear that an unrestricted adversary can always choose a concept sequence (a sequence 
of active concepts) that the tracker can not track. Therefore, it is necessary to restrict 
the changes that the adversary can induce. In this paper, we require that two subsequent 
concepts differ by no more than /" that is, d(c t, ct-r) ~ /' for all t. We define the restricted 
concept sequence space C-y = {c : Ct E C, d(ct, Ct+1) ~ y}. In the following, we are 
concerned with two types of adversaries: a benign adversary which causes changes that are 
independent of the hypothesis; and a greedy adversary which always chooses a change that 
will maximize d(ct, Ct-1) constrained by the upper-bound. 

Since we have restricted the adversary, it seems only fair to restrict the tracker too. We 
require that a tracking algorithm be: deterministic, i.e., that the process generating the 
hypotheses be detenninistic; prudent, i.e., that the label predicted for an instance be a 
detenninistic function of the current hypothesis: at = Ct-1 (xt); and conservative, i.e., that 
the hypothesis is modified only when an example is mislabeled. The restriction that a tracker 
be conservative rules out algorithms which attempt to predict the adversary's movements 
and is the most restrictive of the three. On the other hand, when the tracker does update its 
hypothesis, there are no restrictions on d( Ct. Ct-1). 

To measure perfonnance, we focus on the mistake rate of the tracker. A mistake occurs 
when the tracker mislabels an instance, i.e., whenever Ct-1 (xt) =I Ct(Xt). For convenience, 
we define a mistake indicator function, M(xt• Ct. Ct-1) which is I if Ct-1(Xt) =I ct(xt) and 0 
otherwise. Note that if a mistake occurs, it occurs before the hypothesis is updated­
a conservative tracker is always a step behind the adversary. We are interested in the 
asymptotic mistake rate, p.. = lim inft->oo ~ 2::=0 M(xt. Ct. Ct-l)· 

Following Helmbold and Long (1991), we say that an algorithm (p.., y)-tracks a sequence 
space C if, for all C E C-y and all drift rates 1" not greater than 1', the mistake rate p..' is at 
most p... 

We are interested in bounding the asymptotic mistake rate of a tracking algorithm based 
on the concept class and the adversary. To derive a lower bound on the mistake rate, we 
hypothesize the existence of a perfect conservative tracker, i.e., one that is always able to 
guess the correct concept each time it makes a mistake. We say that such a tracker has 
complete side information (CSI). No conservative tracker can do better than one with CSI. 
Thus, the mistake rate for a tracker with CSI is a lower bound on the mistake rate achievable 
by any conservative tracker. 

To upper bound the mistake rate, it is necessary that we hypothesize a particular tracking 
algorithm when no side information (NSI) is available, that is, when the tracker only knows 
it mislabeled an instance and nothing else. In our analysis, we study a simple tracking 
algorithm which modifies the previous hypothesis just enough to correct the mistake. 

3 ANALYSIS 

We consider two concept classes in this paper, half-planes and the intersection of two half­
planes which can be defined by lines in the plane that pass through the origin. We call these 
classes HS2 and IHS2• In this section, we present our analysis for HS 2 • 

Without loss of generality, since the lines pass through the origin, we take the instance 
space to, be the circumference of the unit circle. A half-plane in HS 2 is defined by a vector 
w such that for an instance x, c(x) = 1 if wx ~ 0 and c(x) = 0 otherwise. Without loss of 
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Figure' I: Markov chain for the greedy adversary and (a) CSI and (b) COVER trackers. 

generality, as we will show later, we assume that the instances are chosen uniformly. 

To begin, we assume a greedy adversary as follows: Every time the tracker guesses the 
correct target concept (that is, Ct-l = ct-d, the greedy adversary randomly chooses a 
vector r orthogonal to w and at every iteration, the adversary rotates w by 7r"l radians in the 
direction defined by r. We have shown that a greedy adversary maximizes the asymptotic 
mistake rate for a conservati ve tracker but do not present the proof here. 

To lower bound the achievable error rate, we assume a conservative tracker with complete 
side information so that the hypothesis is unchanged if no mistake occurs and is updated to 
the correct concept otherwise. The state of this system is fully described by d(c t, ct ) and, 
for "I = 1/ K for some integer K, is modeled by the Markov chain shown in figure I a. In 
each state Si (labeled i in the figure), d(cr. Ct) = i"l. The asymptotic mistake rate is equal to 
the probability of state 0 which is lower bounded by 

1("1) = J2"1/7T' - 2"1/7r 

Since I( "I) depends only on "I which, in tum, is defined in terms of the probability measure, 
the results holds for all distributions. Therefore, since this result applies to the best of all 
possible conservative trackers, we can say that 

Theorem 1. For HS2 , if d(ct, ct-d ~ "I, then there exists a concept sequence C E C-y such 
that the mistake rate p., > 1("1). Equivalently, C-y is not ("I,p.,)-trackable whenever p., < 1("1). 

To upper bound the achievable mistake rate, we must choose a realizable tracking algorithm. 
We have analyzed the behavior of a simple algorithm we call COVER which rotates the 
hypothesize line just far enough to cover the incorrectly labeled instance. Mathematically, 
if Wt is the hypothesized normal vector at time t and Xt is the mislabeled instance: 

-.. -.. (-..) 
Wt = Wt-l - Xt · Wt-l Xt· (1) 

In this case, a mistake in state Si can lead to a transition to any state Sj for j ~ i as shown in 
Figure I b. The asymptotic probability of a mistake is the sum of the equilibrium transition 
probabilities P(Sj lSi) for all j ~ i. Solving for these probabilities leads to an upper bound 
u( "I) on the mistake rate: 

u("I) = J7T'''I/2+''I(2+~) 

Again this depends only on "I and so is distribution independent and we can say that: 

Theorem 2. For HS2 , for all concept sequences c E C-y the mistake rate for COVER 
p., ~ u("I). Equivalently, C-y is ("I,p.,)-trackable whenever p., < u("I). 
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If the adversary is benign, it is as likely to decrease as to increase the probability of a 
mistake. Unfortunately, although this makes the task ofthe tracker easier, it also makes the 
analysis more difficult. So far, we can show that: 

Theorem 3. For HS2 and a benign adversary, there exists a concept sequence C Eel' such 
that the mistake rate J.L is O( 'Y2/3). 

4 SIMULATIONS 

To test the predictions ofthe theory and explore some areas for which we currently have no 
theory, we have run simulations for a variety of concept classes, adversaries, and tracking 
algorithms. Here we will present the results for single half-planes and the intersection of 
two half-planes; both greedy and benign adversaries; an ideal tracker; and two types of 
trackers that use no side information. 

4.1 HALF-PLANES 

The simplest concept class we have simulated is the set of all half-planes defined by lines 
passing through the origin. This is equivalent to the set classifications realizable with 
2-dimensional perceptrons with zero threshold. In other words, if w is the normal vector 
and x is a point in space, c(x) = 1 if w . x 2:: 0 and c(x) = 0 otherwise. The mistake 
rate reported for each data point is the average of 1,000,000 iterations. The instances were 
chosen uniformly from the circumference of the unit circle. 

We also simulated the ideal tracker using an algorithm called CSI and tested a tracking 
algorithm called COVER, which is a simple implementation of the tracking algorithm 
analyzed in the theory. If a tracker using COVER mislabels an instance, it rotates the 
normal vector in the plane defined by it and the instance so that the instance lies exactly on 
the new hypothesis line, as described by equation 1. 

4.1.1 Greedy adversary 

Whenever CSI or COVER makes a mistake and then guesses the concept exactly, the 
greedy adversary uniformly at random chooses a direction orthogonal to the normal vector 
ofthe hyperplane. Whenever COVER makes a mistake and wt =I w" the greedy adversary 
choose the rotation direction to be in the plane defined by W t and Wt and orthogonal to w t. 
At every iteration, the adversary rotates the normal vector of the hyperplane in the most 
recently chosen direction so that d(c" cr+t> = 'Y, or equivalently, Wt . Wt-l = cos( 1T'Y). 

Figure 2 shows that the theoretical lower bound very closely matches the simulation results 
for CSI when 'Y is small. For small 'Y, the simulation results for COVER lie very close to the 
theoretical predictions for the NSI case. In other words, the bounds predicted in theorems 1 
and 2 are tight and the mistake rates for CSI and COVER differ by only a factor of 1T /2. 

4.1.2 Benign adversary 

At every iteration, the benign adversary uniformly at random chooses a direction orthogonal 
to the normal vector of the hyperplane and rotates the hyperplane in that direction so 
that d(c" ct+d = 'Y. Figure 3 shows that CSI behaves as predicted by Theorem 3 when 
J.L = 0.6'Y2/3. The figure also shows that COVER performs very well compared to CSI. 
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Figure 2: The mistake rate, /.L, as a function of the rate of change, ,)" for HS 2 when the 
adversary is greedy. 
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Figure 3: The mistake rate, /.L, as a function of the rate of change, ,)" for HS 2 when the 
adversary is benign. The line is /.L = 0.6,),2/3. 

4.2 INTERSECTION OF TWO HALF-PLANES 

The other concept class we consider here is the intersection of two half-spaces defined by 
lines through the origin. That is, c(x) = 1 if W IX ~ 0 and W2X ~ 0 and ~(x) = 0 otherwise. 
We tested two tracking algorithms using no side information for this concept class. 

The first is a variation on the previous COVER algorithm. For each mislabeled instance: if 
both half-spaces label Xt differently than Ct(Xt), then the line that is closest in euclidean dis­
tance to Xt is updated according to COVER; otherwise, the half-space labeling X t differently 
than ct(xt) is updated. 

The second is a feed-forward network with 2 input, 2 hidden and 1 output nodes. The 
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Figure 4: The mistake rate, fL, as a function of the rate of change, 'Y, for IHS 2 when the 
adversary is greedy. 

thresholds of all the neurons and the weights from the hidden to output layers are fixed, i.e., 
only the input weights can be modified. The output of each neuron is/CD) = (1 +e -lOwu)-l. 

For classification, the instance was labeled one if the output of the network was greater than 
0.5 and zero otherwise. If the difference between the actual and desired outputs was greater 
than 0.1, back-propagation was run using only the most recent example until the difference 
was below 0.1. The learning rate was fixed at 0.01 and no momentum was used. Since the 
model may be updated without making a mistake, this algorithm is not conservative. 

4.2.1 Greedy Adversary 

At each iteration, the greedy adversary rotates each hyperplane in a direction orthogonal to 
its normal vector. Each rotation direction is based on an initial direction chosen uniformly 
at random from the set of vectors orthogonal to the normal vector. At each iteration, both 
the normal vector and the rotation vector are rotated 7T'Y /2 radians in the plane they define 
so that d(ct, Ct-l) = 'Y for every iteration. Figure 4 shows that the simulations match the 
predictions well for small 'Y. Non-conservative back-propagation performs about as well 
as conservative CSI and slightly better than conservative COVER. 

4.2.2 Benign Adversary 

At each iteration, the benign adversary uniformly at random chooses a direction orthogonal 
to Wi and rotates the hyperplane in that direction such that d(c t, Ct-l) = 'Y. The theory for 
the benign adversary in this case is not yet fully developed, but figure 5 shows that the 
simulations approximate the optimal performance for HS 2 against a benign adversary with 
c E c'Y/2' Non-conservative back-propagation does not perform as well for very small 'Y, 
but catches up for 'Y > .001. This is likely due to the particular choice of learning rate. 
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Figure 5: The mistake rate, IL, as a function of the rate of change, y, for IHS 2 when the 
adversary is benign. The dashed line is IL = O.6( Y /2)2/3. 

5 CONCLUSIONS 

We have presented the results of some of our research applied to the problem of tracking 
time-varying half-spaces. For HS2 and IHS2 presented here, simulation results match the 
theory quite well. For IHS2 , non-conservative back-propagation perforn1s quite well. 

We have extended the theorems presented in this paper to higher-dimensional input vectors 
and more general geometric concept classes. In Theorem 3, IL ~ cy 2/3 for some constant c 
and we are working to find a good value for that constant. We are also working to develop 
an analysis of non-conservative trackers and to better understand the difference between 
conservative and non-conservative algorithms. 
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