
Rule Induction through Integrated Symbolic and
Subsymbolic Processing

Clayton McMillan, Michael C. Mozer, Paul Smolensky
Department of Computer Science and

Institute of Cognitive Science
University of Colorado

Boulder, CO 80309-0430

Abstract
We describe a neural network, called RufeNet, that learns explicit, sym­
bolic condition-action rules in a formal string manipulation domain.
RuleNet discovers functional categories over elements of the domain,
and, at various points during learning, extracts rules that operate on
these categories. The rules are then injected back into RuleNet and
training continues, in a process called iterative projection. By incorpo­
rating rules in this way, RuleNet exhibits enhanced learning and gener­
alization performance over alternative neural net approaches. By
integrating symbolic rule learning and subsymbolic category learning,
RuleNet has capabilities that go beyond a purely symbolic system. We
show how this architecture can be applied to the problem of case-role
assignment in natural language processing, yielding a novel rule-based
solution.

1 INTRODUCTION
We believe that neural networks are capable of more than pattern recognition; they can
also perform higher cognitive tasks which are fundamentally rule-governed. Further we
believe that they can perform higher cognitive tasks better if they incorporate rules rather
than eliminate them. A number of well known cognitive models, particularly of language,
have been criticized for going too far in eliminating rules in fundamentally rule-governed
domains. We argue that with a suitable choice of high-level, rule-governed task, represen­
tation, processing architecture, and learning algorithm, neural networks can represent and
learn rules involving higher-level categories while simultaneously learning those catego­
ries. The resulting networks can exhibit better learning and task performance than neural
networks that do not incorporate rules, have capabilities that go beyond that of a purely
symbolic rule-learning algorithm.

969

970 McMillan, Mozer, and Smolensky

We describe an architecture, called RuleNet, which induces symbolic condition-action
rules in a string mapping domain. In the following sections we describe this domain, the
task and network architecture, simulations that demonstrate the potential for this
approach, and finally, future directions of the research leading toward more general and
complex domains.

2 DOMAIN
We are interested in domains that map input strings to output strings. A string consists of n
slots, each containing a symbol. For example, the string abed contains the symbol e in
slot 3. The domains we have studied are intrinsically rule-based, meaning that the map­
ping function from input to output strings can be completely characterized by explicit,
mutually exclusive condition-action rules. These rules are of the general form "if certain
symbols are present ill the input then perform a certain mapping from the input slots to the
output slots." The conditions do not operate directly on the input symbols, but rather on
categories defined over the input symbols. Input symbols can belong to mUltiple catego­
ries. For example, the words boy and girl are instances of the higher level category
HUMAN. We denote instances with lowercase bold font, and categories with uppercase
bold font. It should be apparent from context whether a letter string refers to a single
instance, such as boy, or a string of instances, such as abed.

Three types of conditions are allowed: 1) a simple condition, which states that an instance
of some category must be present in a particular slot of the input string, 2) a conjunction of
two simple conditions, and 3) a disjunction of two simple conditions. A typical condition
might be that an instance of the category W must be present in slot 1 of the input string and
an instance of category Y must be present in slot 3.

The action performed by a rule produces an output string in which the content of each slot
is either a fixed symbol or a function of a particular input slot, with the additional con­
straint that each input slot maps to at most one output slot. In the present work, this func­
tion of the input slots is the identity function. A typical action might be to switch the
symbols in slots 1 and 2 of the input, replace slot 3 with the symbol a, and copy slot 4 of
the input to the output string unchanged, e.g., abed - baad.

We call rules of this general form second-order categorical permutation (SCP) rules. The
number of rules grows exponentially with the length of the strings and the number of input
symbols. An example of an SCP rule for strings of length four is:

if (input1 is an instance of Wand input] is an instance of Y) then
(output1 = input2' oUtput2 = input1' output] = a, output4==input4)

where illputa and outputJl denote input slot a and output slot ~, respectively. As a short­
hand for this rule, we write [A W_Y_ - 21a4], where the square brackets indicate this is
a rule, the" A" denotes a conjunctive condition, and the "_" denotes a wildcard symbol. A
disjunction is denoted by "v".

This formal string manipulation task can be viewed as an abstraction of several interesting
cognitive models in the connectionist literature, including case-role assignment (McClel­
land & Kawamoto, 1986), grapheme-phoneme mapping (Sejnowski & Rosenberg, 1987),
and mapping verb stems to the past tense (Rumelhart & McClelland, 1986).

Rule Induction through Integrated Symbolic and Subsymbolic Processing 971

o single unit
c:::::I layer of units
.- complete connectivity
I>-- gating connection

m condition units

n pools of v category units

n pools of u hidden units

Figure 1: The RuleNet Architecture

3 TASK

input

RuleNet's task is to induce a compact set of rules that accurately characterizes a set of
training examples. We generate training examples using a predefined rule base. The rules
are over strings of length four and alphabets which are subsets of {a, b, c, d, e, f, g,
h, i, j, k, I}. For example, the rule [v Y _VI _ - 4h21] may be used to generate the
exemplars:

hedk - kheh, cldk-khlc, gbdj -j hbg, gdbk-khdg

where category VI consists of a, b, c, d, i, and category Y consists of f, g, h. Such
exemplars form the corpus used to train RuleNet. Exemplars whose input strings meet the
conditions of several rules are excluded. RuleNet's task is twofold: It must discover the
categories solely based upon the usage of their instances, and it must induce rules based
upon those categories.

The rule bases used to generate examples are minimal in the sense that no smaller set of
rules could have produced the examples. Therefore, in our simulations the target number
of rules to be induced is the same as the number used to generate the training corpus.

There are several traditional, symbolic systems, e.g., COBWEB (Fisher, 1987), that
induce rules for classifying inputs based upon training examples. It seems likely that,
given the correct representation, a system such as COBWEB could learn rules that would
classify patterns in our domain. However, it is not clear whether such a system could also
learn the action associated with each class. Classifier systems (Booker, et ai., 1989) learn
both conditions and actions, but thcre is no obvious way to map a symbol in slot a of the
input to slot ~ of the output. We have also devised a greedy combinatoric algorithm for
inducing this type of rule, which has a number of shortcomings in comparison to RuleNet.
See McMillan (1992) for comparisons of RuleNet and alternative symbolic approaches.

4 ARCHITECTURE
RuleNet can implement SCP rules of the type outlined above. As shown in Figure 1,
RuleNet has five layers of units: an input layer, an output layer, a layer of category units, a
layer of condition units, and a layer of hidden units. The operation of RuleNet can be
divided into three functional components: categorization is performed in the mapping
from the input layer to the category layer via the hidden units, the conditions are evaluated
in the mapping from the category layer to the condition layer, and actions are performed in

972 McMillan. Mozer. and Smolensky

the mapping from the input layer to the output layer, gated by the condition units.

The input layer is divided into II pools of units, one for each slot, and activates the cate­
gory layer, which is also divided into 11 pools. Input pool a maps to category pool a. Units
in category pool a represent possible categorizations of the symbol in input slot a. One or
more category units will respond to each input symbol. The activation of the hidden and
category units is computed with a logistic squashing function. There are m units in the
condition layer, one per rule. The activation of condition unit i, Pi' is computed as follows:

logistic (11 e t;)
p. -

I ~ logistic (Ilet)
J

The activation Pi represents the probability that rule i applies to the current input. The nor­
malization enforces a soft winner-take-all competition among condition units. To the
degree that a condition unit wins, it enables a set of weights from the input layer to the out­
put layer. These weights correspond to the action for a particular rule. There is one set of
weights, A j , for each of the m rules. The activation of the output layer, y, is calculated from
the input layer, x, as follows:

Essentially, the transformation Ai for rule each rule i is applied to the input, and it contrib­
utes to the output to the degree that condition i is satisfied. Ideally, just one condition unit
will be fully activated by a given input, and the rest will remain inactive.

This architecture is based on the local expert architecture of Jacobs, Jordan, Nowlan, and
Hinton (1991), but is independently motivated in our work by the demands of the task
domain. RuleNet has essentially the same structure as the Jacobs network, where the
action substructure of RuleNet corresponds to their local experts and the condition sub­
structure corresponds to their gatillg lIetwork. However, their goal-to minimize crosstalk
between logically independent sub tasks-is quite different than ours.

4.1 Weight Templates

In order to interpret the weights in RuleNet as symbolic SCP rules, it is necessary to estab­
lish a correspondence between regions of weight space and SCP rules.

A weight template is a parameterized set of constraints on some weights-a manifold in
weight space-that has a direct correspondence to an SCP rule. The strategy behind itera­
tive projection is twofold: constrain gradient descent so that weights stay close to tem­
plates in weight space, and periodically project the learned weights to the nearest
template, which can then readily be interpreted as a set of SCP rules.

For SCP rules, there are three types of weight templates: one dealing with categorization,
one with rule conditions, and one with rule actions. Each type of template is defined over a
subset of the weights in RuleNet. The categorization templates are defined over the
weights from input to category units, the condition templates are defined over the weights
from category to condition units for each rule i, ci ' and the action templates are defined
over the weights from input to output units for each rule i, Ai'

Rule Induction through Integrated Symbolic and Subsymbolic Processing 973

Category templates. The category templates specify that the mapping from each input slot
a to category pool a, for 1 s a S II, is uniform. This imposes category invariance across
the input string.

Condition templates. The weight vector ci , which maps category activities to the activity
of condition unit i, has Vil elements-v being the number of category units per slot and 11

being the number of slots. The fact that the condition unit should respond to at most one
category in each slot implies that at most one weight in each v-element subvector of c j

should be nonzero. For example, assuming there are three categories, N, X, and Y, the vec­
tor cj that detects the simple condition "illput2 is an instance of X" is: (000 OcpO 000 000),
where cp is an arbitrary parameter. Additionally, a bias is required to ensure that the net
input will be negative unless the condition is satisfied. Here, a bias value, b, of -O.5cp will
suffice. For disjunctive and conjunctive conditions, weights in two slots should be equal to
cp, the rest zero, and the appropriate bias is -.5cp or -1.5cp, respectively. There is a weight
template for each condition type and each combination of slots that takes part in a condi­
tion. We generalize these templates further in a variety of ways. For instance, in the case
where each input symbol falls into exactly one category, if a constant Ea is added to all
weights of Cj corresponding to slot a and Ea is also subtracted from b, the net input to con­
dition unit i will be unaffected. Thus, the weight template must include the {Ea }.

Action templates. If we wish the actions carried out by the network to correspond to the
string manipulations allowed by our rule domain, it is necessary to impose some restric­
tions on the values assigned to the action weights for rule i, A j • Ai has an 11 x Il block form,
where II is the length of input/output strings. Each block is a k x k submatrix, where k is
the number of elements in the representation of each input symbol. The block at block-row
~, block-column a of Aj copies illputa to outputr. if it is the identity matrix. Thus, the
weight templates restrict each block to being either the identity matrix or the zero matrix.
If outputr. is to be a fixed symbol, then block-row ~ must be all zero except for the output
bias weights in block-row ~.

The weight templates are defined over a submatrix Ajr.' the set of weights mapping the
input to an output slot ~. There are 11+1 templates, one for the mapping of each input slot
to the output, and one for the writing of a fixed symbol to the output. An additional con­
straint that only one block may be nonzero in block-column a of Ai ensures that inputa
maps to at most one output slot.

4.2 Constraints on Weight Changes

Recall that the strategy in iterative projection is to constrain weights to be close to the tem­
plates described above, in order that they may be readily interpreted as symbolic rules. We
use a combination of hard and soft constraints, some of which we briefly describe here.

To ensure that during learning every block in Ai approaches the identity or zero matrix, we
constrain the off-diagonal terms to be zero and constrain weights along the diagonal of
each block to be the same, thus limiting the degrees of freedom to one parameter within
each block. All weights in Cj except the bias are constrained to positive or zero values.
Two soft constraints are imposed upon the network to encourage all-or-none categoriza­
tion of input instances: A decay term is used on all weights in cj except the maximum in
each slot, and a second cost term encourages binary activation of the category units.

974 McMillan, Mozer, and Smolensky

4.3 Projection

The constraints described above do not guarantee that learning will produce weights that
correspond exactly to SCP rules. However, using projection, it is possible to transform the
condition and action weights such that the resulting network can be interpreted as rules.
The essential idea of projection is to take a set of learned weights, such as CI , and compute
values for the parameters in each of the corresponding weight templates such that the
resulting weights match the learned weights. The weight template parameters are esti­
mated using a least squares procedure, and the closest template, based upon a Euclidean
distance metric, is taken to be the projected weights.

5 SIMULATIONS
We ran sim ulations on 14 different training sets, averaging the performance of the network
over at least five runs with different initial weights for each set. The training data were
generated from SCP rule bases containing 2-8 rules and strings of length four. Between
four and eight categories were used. Alphabets ranged from eight to 12 symbols. Symbols
were represented by either local or distributed activity vectors. Training set sizes ranged
from 3-15% of possible examples.

Iterative projection involved the following steps: (1) start with one rule (one set of c;-AI
weights), (2) perform gradient descent for 500-5,000 epochs, (3) project to the nearest set
of SCP rules and add a new rule. Steps (2) and (3) were repeated until the training set was
fully covered.

In virtually every run on each data set in which RuleNet converged to a set of rules that
completely covered the training set, the rules extracted were exactly the original rules used
to generate the training set. In the few remaining runs, RuleNet discovered an equivalent
set of rules.

It is instructive to examine the evolution of a rule set. The rightmost column of Figure 2
shows a set of five rules over four categories, used to generate 200 exemplars, and the left
portion of the Figure shows the evolution of the hypothesis set of rules learned by RuleNet
over 20,000 training epochs, projecting every 4000 epochs. At epoch 8000, RuleNet has
discovered two rules over two categories, covering 24.5% of the training set. At epoch
12,000, RuleNet has discovered three rules over three categories, covering 52% of the
training set. At epoch 20,000, RuleNet has induced five rules over four categories that

epoch 8000 epoch 12,000 epoch 20,000 original rules/categ.

[v B_C_ - 4h21] [v B_C_ - 4h21] [v B_C_ - 4h21] [v Y_W_ - 4h21]
[1\ _B_C - 341£] [1\ _EC - 2413] [_B_ - 4213] [_Y_ - 4213]

[1\ _B_B - 321£] [v _E_D - 342£] [v _Z_X - 342£]
[1\ _D_B - 3214] [1\ _X_Y - 3214]
[v _EC - 2413] [v _ZW - 2413]

Categ. Instance Categ. Instance Categ. Instance Categ. Instance
B f 9 h B f 9 h C abc d i w abc d i
C abc i C abc d i D e 9 1 X e 9 1

E a i j k B f 9 h y f 9 h
E a c i j k z a c i j k

Figure 2: Evolution of a Rule Set

Rule Induction through Integrated Symbolic and Subsymbolic Processing 975

Table 1: Generalization performance of RuleNet (average of five runs)

% of patterns correctly mapped
Data Set 1 Data Set 2 Data Set 3 Data Set 4

Architecture (8 Rules) (3 Rules) (3 Rules) (5 Rules)
tram test tram test tram test tram test

RuleNet 100 100 100 100 100 100 100 100
Jacobs architecture 100 22 100 7 100 14 100 27
3-layer backprop 100 27 100 7 100 14 100 35
of patterns in set 120 1635 45 1380 45 1380 75 1995

cover 100% of the training examples. A close comparison of these rules with the original
rules shows that they only differ in the arbitrary labels RuleNet has attached to the catego­
ries.

Learning rules can greatly enhance generalization. In cases where RuleNet learns the orig­
inal rules, it can be expected to generalize perfectly to any pattern created by those rules.
We compared the performance of RuleNet to that of a standard three-layer backprop net­
work (with 15 hidden units per rule) and a version of the Jacobs architecture, which in
principle has the capacity to perform the task. Four rule bases were tested, and roughly 5%
of the possible examples were used for training and the remainder were used for generali­
zation testing. Outputs were thresholded to 0 or 1. The cleaned up outputs were compared
to the targets to determine which were mapped correctly. All three learn the training set
perfectly. However, on the test set, RuleNet's ability to generalize is 300% to 2000% bet­
ter than the other systems (Table1).

Finally, we applied RuleNet to case-role assignment, as considered by McClelland and
Kawamoto (1986). Case-role assignment is the problem of mapping syntactic constituents
of a sentence to underlying semantic, or thematic, roles. For example, in the sentence,
"The boy broke the window", boy is the subject at the syntactic level and the agent, or act­
ing entity, at the semantic level. Window is the object at the syntactic level and the patient,
or entity being acted upon, at the semantic level. The words of a sentence can be repre­
sented as a string of Il slots, where each slot is labeled with a constituent, such as subject,
and that slot is filled with the corresponding word, such as boy. The output is handled anal­
ogously. We used McClelland and Kawamoto's 152 sentences over 34 nouns and verbs as
RuleNet's training set. The five categories and six rules induced by RuleNet are shown in
Table 2, where S = subject, 0 = object, and wNP = noun in the with noun-phrase. We con­
jecture that RuleNet has induced such a small set of rules in part because it employs

Table 2: SCP Rules Induced by RuleNet in Case-Role Assignment

Rule Sample of Sentences Handled Correctly

if 0 = VICTIM then wNP-modifier The boy ate the pasta with cheese.
if 0 = THING 1\ wNP = UTENSIL

then wNP-instrument
The boy ate the pasta with the fork.

if S = BREAKER then S-instrument The rock broke the window.
if S = THING then S-patient The window broke. The fork moved.
if V = moved then self-patient The man moved.
if S = ANIMATE then food-patient The lion ate.

976 McMillan, Mozer, and Smolensky

implicit conflict resolution, automatically assigning strengths to categories and conditions.
These rules cover 97% of the training set and perform the correct case-role assignments on
84% of the 1307 sentences in the test set.

6 DISCUSSION
RuleNet is but one example of a general methodology for rule induction in neural net­
works. This methodology involves five steps: 1) identify a fundamentally rule-governed
domain, 2) identify a class of rules that characterizes that domain, 3) design a general
architecture, 4) establish a correspondence between components of symbolic rules and
manifolds of weight space-weight templates, and 5) devise a weight-template-based
learning procedure.

Using this methodology, we have shown that RuleNet is able to perform both category and
rule learning. Category learning strikes us as an intrinsically subsymbolic process. Func­
tional categories are often fairly arbitrary (consider the classification of words as nouns or
verbs) or have complex statistical structure (consider the classes "liberals" and "conserva­
tives"). Consequently, real-world categories can seldom be described in terms of boolean
(symbolic) expressions; subsymbolic representations are more appropriate.

While category learning is intrinsically subsymbolic, rule learning is intrinsically a sym­
bolic process. The integration of the two is what makes RuleNet a unique and powerful
system. Traditional symbolic machine learning approaches aren't well equipped to deal
with subsymbolic learning, and connectionist approaches aren't well equipped to deal
with the symbolic. RuleNct combines the strengths of each approach.

Acknowledgments

This research was supported by NSF Presidential Young Investigator award IRI-9058450, grant 90-
21 from the James S. McDonnell Foundation, and DEC external research grant 1250 to MM; NSF
grants IRI-8609599 and ECE-8617947 to PS; by a grant from the Sloan Foundation's computational
neuroscience program to PS; and by the Optical Connectionist Machine Program of the NSF Engi­
neering Research Center for Optoelectronic Computing Systems at the University of Colorado at
Boulder.

References

Booker, L.B., Goldberg, D.E., and Holland, J.H. (1989). Classifier systems and genetic algorithms,
Artificiallntelligellce 40:235-282.

Fisher, D.H. (1987). Knowledge acquisition via incremental concept clustering. Machine Learning
2:139-172.

Jacobs, R., Jordan, M., Nowlan, S., Hinton, G. (1991). Adaptive mixtures of local experts. Neural
Computation, 3:79-87.

McClelland, J. & Kawamoto, A. (1986). Mechanisms of sentence processing: assigning roles to con­
stituents. In J.L. McClelland, D.E. Rumelhart, & the PDP Research Group, Parallel Distributed Pro­
cessing: Explorations in tire microstructure of cognition, Vol. 2. Cambridge, MA: MIT PresslBrad­
ford Books.

McMillan, C. (1992). Rule induction in a neural network through integrated symbolic and subsym­
bolic processing. Unpublished Ph.D. Thesis. Boulder, CO: Department of Computer Science, Univer­
sity of Colorado.

Rumelhart, D., & McClelland, 1. (1986). On learning the past tense of English verbs. In 1.L. McClel­
land, D.E. Rumelhart, & the PDP Research Group, Parallel Distributed Processing: Explorations in
the microstructure of cognition. Vol. 2. Cambridge, MA: MIT PresslBradford Books.

Sejnowski, T. 1. & Rosenberg, C. R. (1987). Parallel networks that learn to pronounce English text,
Complex Systems, 1: 145-168.

