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Abstract 

Automatic determination of proper neural network topology by trimming 
over-sized networks is an important area of study, which has previously 
been addressed using a variety of techniques. In this paper, we present 
Information Measure Based Skeletonisation (IMBS), a new approach to 
this problem where superfluous hidden units are removed based on their 
information measure (1M). This measure, borrowed from decision tree in­
duction techniques, reflects the degree to which the hyperplane formed 
by a hidden unit discriminates between training data classes. We show 
the results of applying IMBS to three classification tasks and demonstrate 
that it removes a substantial number of hidden units without significantly 
affecting network performance. 

1 INTRODUCTION 

Neural networks can be evaluated based on their learning speed, the space and time 
complexity of the learned network, and generalisation performance. Pruning over­
sized networks (skeletonisation) has the potential to improve networks along these 
dimensions as follows: 

• Learning Speed: Empirical observation indicates that networks which have 
been constrained to have fewer parameters lack flexibility during search, and 
so tend to learn slower. Training a network that is larger than necessary and 

*This work was partially supported by DOE #DE-FG02-91ER61129, through subcon­
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trimming it back to a reduced architecture could lead to improved learning 
speed . 

• Network Complexity: Skeletonisation improves both space and time complexity 
by reducing the number of weights and hidden units . 

• Generalisation: Skeletonisation could constrain networks to generalise better 
by reducing the number of parameters used to fit the data. 

Various techniques have been proposed for skeletonisation. One approach [Hanson 
and Pratt, 1989, Chauvin, 1989, Weigend et al., 1991] is to add a cost term or 
bias to the objective function. This causes weights to decay to zero unless they 
are reinforced. Another technique is to measure the increase in error caused by 
removing a parameter or a unit, as in [Mozer and Smolensky, 1989, Le Cun et al., 
1990]. Parameters that have the least effect on the error may be pruned from the 
network. 

In this paper, we present Information Measure Based Skeletonisation (IMBS), an 
alternate approach to this problem, in which superfluous hidden units in a single 
hidden-layer network are removed based on their information measure (1M). This 
idea is somewhat related to that presented in [Siestma and Dow, 1991], though we 
use a different algorithm for detecting superfluous hidden units. 

We also demonstrate that when IMBS is applied to a vowel recognition task, to 
a subset of the Peterson-Barney 10-vowel classification problem, and to a heart 
disease diagnosis problem, it removes a substantial number of hidden units without 
significantly affecting network performance. 

2 1M AND THE HIDDEN LAYER 

Several decision tree induction schemes use a particular information-theoretic mea­
sure, called 1M, of the degree to which an attribute separates (discriminates between 
the classes of) a given set of training data [Quinlan, 1986]. 1M is a measure of the 
information gained by knowing the value of an attribute for the purpose of classifi­
cation. The higher the 1M of an attribute, the greater the uniformity of class data 
in the subsets of feature space it creates. 

A useful simplification of the sigmoidal activation function used in back-propagation 
networks [Rumelhart et al., 1986] is to reduce this function to a threshold by map­
ping activations greater than 0.5 to 1 and less than 0.5 to O. In this simplified 
model, the hidden units form hyperplanes in the feature space which separate data. 
Thus, they can be considered analogous to binary-valued attributes, and the 1M of 
each hidden unit can be calculated as in decision tree induction [Quinlan, 1986]. 

Figure 1 shows the training data for a fabricated two-feature, two-class problem and 
a possible configuration of the hyperplanes formed by each hidden unit at the end 
of training. Hyperplane h1 's higher 1M corresponds to the fact that it separates the 
two classes better than h2. 
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Figure 1: Hyperplanes and their IM. Arrows indicate regions where hidden units have 
activations> 0.5. 

3 1M TO DETECT SUPERFLUOUS HIDDEN UNITS 

One of the important goals of training is to adjust the set of hyperplanes formed 
by the hidden layer so that they separate the training data. 1 We define superfluous 
units as those whose corresponding hyperplanes are not necessary for the proper 
separation of training data. For example, in Figure 1, hyperplane h2 is superfluous 
because: 

1. hI separates the data better than h2 and 

2. h2 does not separate the data in either of the two regions created by hI. 

The IMBS algorithm to identify superfluous hidden units, shown in Figure 2, re­
cursively finds hidden units that are necessary to separate the data and classifies 
the rest as superfluous. It is similar to the decision tree induction algorithm in 
[Quinlan, 1986]. 

The hidden layer is skeletonised by removing the superfluous hidden units. Since 
the removal of these units perturbs the inputs to the output layer, the network will 
have to be trained further after skeletonisation to recover lost performance. 

4 RESULTS 

We have tested IMBS on three classification problems, as follows: 

1. Train a network to an acceptable level of performance. 

2. Identify and remove superfluous hidden units. 

3. Train the skeletonised network further to an acceptable level of performance. 

We will refer to the stopping point of training at step 1 as the skeletonisation point 
(SP); further training will be referred to in terms of SP + number of training epochs. 

1 This again is not strictly true for hidden units with sigmoidal activation, but holds for 
the approximate model. 
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Input: 
Training data 
Hidden unit activations for each training data pattern. 

Output: 
List of superfluous hidden units. 

Method: 
main ident-superfluous-hu 
begin 

data-set~ training data 
useful-hu-list~ nil 
pick-best-hu (data-set, useful-hu-list) 
output hidden units that are not in useful-hu-list 

end 
procedure pick-best-hu(data-set, useful-hu-list) 
begin 

if all the data in data-set belong to the same class then return 
Calculate 1M of each hidden unit. 
hl~ hidden unit with best 1M. 
add hl to the useful-hu list 
dsl~ all the data in data-set for which hl has an activation of> .5 
ds2~ all the data in data-set for which hl has an activation of <= .5 
pick-best-hu(dsl, useful-hu-list) 
pick-best-hu(ds2, useful-hu-list) 

end 

Figure 2: IMBS: An Algorithm for Identifying Superfluous Hidden Units 

For each problem, data was divided into a training set and a test set. Several 
networks were run for a few epochs with different back-propagation parameters 'rJ 
(learning rate) and 0: (momentum) to determine their locally optimal values. 

For each problem, we chose an initial architecture and trained 10 networks with dif­
ferent random initial weights for the same number of epochs. The performances of 
the original (i.e. the network before skeletonisation) and the skeletonised networks, 
measured as number of correct classifications of the training and test sets, was mea.­
sured both at SP and after further training. The retrained skeletonised network was 
compared with the original network at SP as well as the original network that had 
been trained further for the same number of weight updates. 2 All training was via 
the standard back-propagation algorithm with a sigmoidal activation function and 
updates after every pattern presentation [Rumelhart et al., 1986]. A paired T-test 
[Siegel, 1988] was used to measure the significance of the difference in performance 
between the skeletonised and original networks. Our experimental results are sum­
marised in Figure 3, and Tables 1 and 2; detailed experimental conditions are given 
below. 

2This was ensured by adjusting the number of epochs a network was trained after 
skeletonisation according to the number of hidden units in the network. Thus, a network 
with 10 hidden units was trained on twice as many epochs as one with 20 hidden units. 
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Figure 3: Summary of experimental results. Circles represent skeletonised networks; 
triangles represent unskeletonised networks for comparison. Note that when performance 
drops upon skeletonisation, the original performance level is recovered within a few weight 
updates. In all cases, hidden unit count is reduced. 

4.1 PETERSON-BARNEY DATA 

IMBS was first evaluated on a 3-class subset of the Peterson-Barney 10-vowel classi­
fication data set, originally described in [Peterson and Barney, 1952], and recreated 
by [Watrous, 1991]. This data consists of the formant values F1 and F2 for each of 
two repetitions of each of ten vowels by 76 speaker (1520 utterances). The vowels 
were pronounced in isolated words consisting of the consonant "h", followed by a 
vowel, followed by "d". This set was randomly divided into a ~,~ training/test 
split, with 298 and 150 patterns, respectively. 

Our initial architecture was a fully connected network with 2 input units, one hidden 
layer with 20 units, and 3 output units. We trained the networks with T] = 1.0 and 
ex = 0.001 until the TSS (total sum of squared error) scores seemed to reach a 
plateau. The networks were trained for 2000 epochs and then skeletonised. 

The skeletonisation procedure removed an average of 10.1 (50.5%) hidden units. 
Though the average performance of the skeletonised networks was worse than that 
of the original, this difference was not statistically significant (p = 0.001). 

4.2 ROBINSON VOWEL RECOGNITION 

Using data from [Robinson, 1989], we trained networks to perform speaker indepen­
dent recognition of the 11 steady-state vowels of British English using a training set 
of LPC-derived log area ratios. Training and test sets were as used by [Robinson, 
1989], with 528 and 462 patterns, respectively. 

The initial network architecture was fully connected, with 10 input units, 11 output 
units, and 30 hidden units. Networks were trained with T] = 1.0 and ex = 0.01, 
until the performance on the training set exceeded 95%. The networks were trained 
for 1500 epochs and then skeletonised. The skeletonisation procedure removed 
an average of 5.8 (19.3%) hidden units. The difference in performance was not 
statistically significant (p = 0.001). 
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Table 1: Performance of unskeletonised networks 

Table 2: Mean difference in the number of correct classifications between the original and 
skeletonised networks. Positive differences indicate that the original network did better 
after further training. The numbers in parentheses indicate the 99.9% confidence intervals 
for the mean. 

comparison points mean difference I 
Original Skeletonised Training set Test set I 
Peterson-Barney 
SP SP 3.10 l-0.83, 7.03J -0.10 l-2.05, 1.84J 
SP SP+1010 -0.1 [-1.76, 1.56] 0.7 [-0.73, 2.13] 
SP+500 SP+1010 0.20 [-1.52, 1.91] 0.30 [-1.30, 1.90] 
Robinson Vowel 
SP SP 1.70 J -2.40, 5.80) 2.40 J -2.39, 7.19J 
SP SP+620 -8.2 [-20.33, 3.93] -4.4 [-18.26, 9.46] 
SP+500 SP+620 -0.30 [ -3.15, 2.55] -0.301-8.36, 7.76] 
Heart Disease 
SP SP 20.80 J-5.66, 47.26J 12.20 l-1.65, 26.051 
SP SP+33 o [-4.28, +4.28] o [-2.85, 2.85] 
SP+14 SP+33 0.60 [ -4.55, 5.75] 0.40 [ -3.03, 3.83] 
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4.3 HEART DISEASE DATA 

Using a 14-attribute set of diagnosis information, we trained networks on a heart 
disease diagnosis problem [Detrano et al., 1989]. Training and test data were chosen 
randomly in a ~, ~ split of 820 and 410 patterns, respectively. The initial networks 
were fully connected, with 25 input units, one hidden layer with 20 units, and 2 
output units. The networks were trained with a = 1.25 and 'rJ = 0.005. Training 
was stopped when the TSS scores seemed to reach a plateau. The networks were 
trained for 300 epochs and then skeletonised. 

The skeletonisation procedure removed an average of 9.6 (48%) hidden units. Here, 
removing superfluous units degraded the performance by an average of 2.5% on 
the training set and 3.0% on the test set. However, after being trained further for 
only 30 epochs, the skeletonised networks recovered to do as well as the original 
networks. 

5 CONCLUSION AND EXTENSIONS 

We have introduced an algorithm, called IMBS, which uses an information mea­
sure borrowed from decision tree induction schemes to skeletonise over-sized back­
propagation networks. Empirical tests showed that IMBS removed a substantial 
percentage of hidden units without significantly affecting the network performance. 

Potential extensions to this work include: 

• Using decision tree reduction schemes to allow for trimming not only superflu­
ous hyperplanes, but also those responsible for overfitting the training data, in 
an effort to improve generalisation. 

• Extending IMBS to better identify superfluous hidden units under conditions 
of less than 100% performance on the training data. 

• Extending IMBS to work for networks with more than one hidden layer. 

• Performing more rigorous empirical evaluation. 

• Making IMBS less sensitive to the hyperplane-as-threshold assumption. In par­
ticular, a model with variable-width hyperplanes (depending on the sigmoidal 
gain) may be effective. 
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