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Abstract 

In this paper, a tree based neural network viz. MARS (Friedman, 1991) for 
the modelling of the yield strength of a steel rolling plate mill is described. 
The inputs to the time series model are temperature, strain, strain rate, 
and interpass time and the output is the corresponding yield stress. It 
is found that the MARS-based model reveals which variable's functional 
dependence is nonlinear, and significant. The results are compared with 
those obta.ined by using a Kalman filter based online tuning method and 
other classification methods, e.g. CART, C4 .5, Bayesian classification. It 
is found that the MARS-based method consistently outperforms the other 
methods. 

1 Introduction 

Hot rolling of steel slabs into fiat plates is a common process in a steel mill. This 
technology has been in use for many years. The process of rolling hot slabs into 
plates is relatively well understood [see, e.g., Underwood, 1950]. But with the 
intense intrnational market competition, there is more and more demand on the 
quality of the finished plates. This demand for quality fuels the search for a better 
understanding of the underlying mechanisms of the transformation of hot slabs 
into plates, and a better control of the parameters involved. Hopefully, a better 
understanding of the controlling parameters will lead to a more optimal setting 
of the control on the process, which will lead ultimately to a better quality final 
product. 
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In this paper, we consider the problem of modelling the plate yield stress in a 
hot steel rolling plate mill. Rolling is a process of plastic deformation and its 
objective is achieved by subjecting the material to forces of such a magnitude that 
the reSUlting stresses produce permanent change of shape. Apart from the obvious 
dependence on the materials used, the characteristics of the material undergoing 
plastic deformation are described by stress, strain and temperature, if the rolling 
is performed on hot slabs . In addition, the interpass time, i.e., the time between 
passes of the slab through the rollers (an indirect measure of the rolling velocity), 
directly influences the metallurgical structure of the metal during rolling. 

There is considerable evidence that the yield stress is also dependent 011 the strain 
rate. In fact, it is observed that as the strain rate increases, the initial yield point 
increases appreciably, but after an extension is achieved, the effect of strain rate on 
the yield stress is very much reduced [see, e.g., Underwood, 1950]. 

The effect of temperature on the yield stress is important. It is shown that the 
resistance to deformation increases with a decrease in temperature. The resistance 
to deformation versus temperature diagram shows a "hump" in the curve, which 
corresponds to the temperature at which the structure of material changes funda­
mentally [see, e.g., Underwood, 1950, Hodgson & Collinson, 1990]. 

Using, e.g., an energy method, it is possible to formulate a theoretical model of the 
dependence of deformation resistance on temperature, strain, strain rate, velocity 
(indirectly, the interpass time). One may then validate the theoretical model by 
performing a rolling experiment on a piece of material, perhaps under laboratory 
conditions [see .e.g., Horihata, Motomura, 1988, for consideration of a three roller 
system] . 

It is difficult to apply the derived theoretical model to a practical situation, due to 
the fact that in a practical process, the measurement of strain and strain rate are 
not accurate. Secondly, one cannot possibly perform a rolling experiment on each 
new piece of material to be rolled. Thus though the theoretical model may serve as 
a guide to our understanding of the process, it is not suitable for controller design 
purposes. 

There are empirical models relating the resistance of deformation to temperature, 
strain and strain rate [see, e.g., Underwood, 1950, for an account of older models]. 
These models are often obtained by fitting the observed data to a general data 
model. 

The following model has been found useful in fitting the observed practical data 

d 
km = a{b sinh -1 (ci: exp( T)!) (1) 

where km is the yield stress, { is the strain, i is the corresponding strain rate, 
and T is the temperature. a, b, c, d and f are unknown constants. It is claimed 
that this model will give a good prediction of the yield stress, especially at lower 
temperatures, and for thin plate passes [Hodgson & Collinson, 1990] . 

This model does not always give good predictions over all temperatures as mill 
conditions vary with time, and the model is only "tuned" on a limited set of data. 
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In order to overcome this problem, McFarlane, Telford, and Petersen [1991] have 
experimented with a recursive model based on the Kalman filter in control theory 
to update the parameters (see, e.g. Anderson, Moore, [1980]), a, b, c, d, / in the 
above model. To better describe the material behaviour at different temperatures, 
the model explicitly incorporates two separate sub-models with a temperature de­
pendence: 

1. Full crystallisation (T < Tupper) 

km = alb sinh-1(ci exp( :)J) 

The constants a, b, c, d, f are model coefficients. 

2. Partial recrystallisation (Tiower ~ T ~ Tupper). 

km = a({ + f*)bsinh-1(ciexp(:)J) 

to .5 = j(Ai-lfi-l + {i)9 h«q(Ti - 1, n)h» 
Ai = h(t, to.5) 

(2) 

(3) 

(4) 
(5) 

where A is the fractional retained strain; {*, expressed as a Taylor series expansion 
of Ai-l (i-l, is the retained strain; t is the interpass time; to.5 is the 50 % recrystalli­
sation time; q(n-l, Ti) is a prescribed nonlinear function of n-l and n; h(.) and 
12(.) are pre-specified nonlinear functions; i, the roll pass number; j, h, g are the 
model coefficients; Tupper is an experimentally determined temperature at which the 
material undergoes a permanent change in structure; and 1iower is a temperature 
below which the material does not exhibit any plastic behaviour. 

Model coefficients a,b,c,d,/,g,h,j are either estimated in a batch mode (i.e., all 
the past data are assumed to be available simultaneously) or adapted recursively 
on-line (i.e., only a limited number of the past data is available) using a Kalman 
filter algorithm in order to provide the best model predictions [McFarlane, Telford, 
Petersen, 1991]. 

It is noted that these models are motivated by the desire to fit a nonlinear model 
of a special type, i.e., one which has an inverse hyperbolic sine function. But, since 
the basic operation is data fitting, i.e., to fit a model to the set of given data, it 
is possible to consider more general nonlinear models. These models may not have 
any ready interpretation in metallurgical terms, but these models may be better in 
fitting a nonlinear model to the given data set in the sense that it may give a better 
prediction of the output. 

It has been shown (see, e.g., Hornik et aI, 1989) that a class of artificial neural 
networks, viz., a multilayer perceptron with a single hidden layer can approximate 
any arbitrary input output function to an arbitrary degree of accuracy. Thus it 
is reasonable to experiment with different classes of artificial neural network or 
induction tree structures for fitting the set of given data and to examine which 
structure gives the best performance. 
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The structure of the paper is as follows: in section 2, a brief review of a special 
class of neural networks is given. In section 3, results in applying the neural network 
model to the plate mill data are given. 

2 A Tree Based Neural Network model 

Friedman [1991] introduced a new class of neural network architecture which is 
called MARS (Multivariate Adaptive Regression Spline). This class of methods 
can be interpreted as a tree of neurons, in which each leaf of the tree consists of a 
neuron. The model of the neuron may be a piecewise linear polynomial, or a cubic 
polynomial, with the knot as a variable. In view of the lack of space, we will refer 
the interested readers to Friedman's paper [1991] for details on this method. 

3 Results 

MARS has been applied to the platemill data. We have used the data in the 
following manner. 

We concatenate different runs of the plate mill into a single time series. This consists 
of 2877 points corresponding to 180 individual plates with approximately 16 passes 
on each plate. There are 4 independent variables, viz., interpass time, temperature, 
strain, and strain rate. The desired output variable is the yield stress. 

A plot of the individual variables, viz temperature, strain, strain rate, interpass 
time and stress versus time reveal that the variables can vary rather considerably 
over the entire time series. In addition, a plot of stress versus temperature, stress 
versus strain, stress versus strain rate and stress versus interpass time reveals that 
the functional dependence could be highly nonlinear. 

We have chosen to use an additive model (Friedman [1991]), instead of the more 
general multivariate model, as this will allow us to observe any possible nonlinear 
functional dependencies of the output as a function of the inputs. 

(6) 

where k., i = I, 2, 3, 4 are gains, and fi' i = 1, 2, 3,4 are piecewise nonlinear polyno­
mial models found by MARS. 

The results are as follows: 

Both the piecewise linear polynomial and the piecewise cubic polynomial are used 
to study this set of data. It is found that the cubic polynomial gives a better fit than 
the linear polynomial fit. Figure I(a) shows the error plot between the estimated 
output from a cubic spline fit, and the training data. It is observed that the error 
is very small. The maximum error is about -0.07. Figure I(b) shows the plot of the 
predicted yield stress and the original yield stress over the set of training data. 

These figures indicate that the cubic polynomial fit has captured most of the vari­
ation of the data. It is interesting to note that in this model, the interpass time 



702 

.1' 

13 

12 

- 12 

Tsoi 

JI 

28 

2' 

Figure 1: (a) The prediction error on the training data set (b) The prediction and 
the training data set superimposed 

plays no significant part. This feature may be a peculiar aspect of this set of data 
points. It is not true in general. 

It is found that the strain rate has the most influence on the data, followed by 
temperature, and followed by strain. The model, once obtained, can be used to 
predict the yield stress from a given set of temperature, strain, and strain rate. 

Figure 2(a) shows the prediction error between the yield stress and the predicted 
yield stress on a set of testing data, i.e. the data which is not used to train the model 
and Figure 2(b) shows a plot of the predicted value of yield stress superimposed on 
the original yield stress. 

It is observed that the prediction on the set of testing data is reasonable. This 
indicates that the MARS model has captured most of the dynamics underlying the 
original training data, and is capable of extending this captured knowledge onto a 
set of hitherto unseen data. 

4 Comparison with the results obtained by conventional 
approaches 

In order to compare the artificial neural network approach to more conventional 
methods for model tuning, the same data set was processed using: 

1. A MARS model with cubic polynomials 

2. An inverse hyperbolic sine law model using least square batch parameter tuning 
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Figure 2: (a) The prediction error on the testing data set (b) The prediction and 
the testing data set superimposed 

3. An inverse hyperbolic sine law model using a recursive least squares tuning 

4. CART based classification [Brie men et. al., 1984] 

5. C4.5 based method [Quinlan, 1986,1987] 

6. Bayesian classification [Buntine, [1990] 

In each case, we used a training data set of78 plates (1242 passes) and a testing data 
set of 16 plates (252 passes). In the cases of CART, C4.5, and Bayesian classification 
methods, the yield stress variable is divided equally into 10 classes, and this is used 
as the desired output instead of the original real values. 

The comparison of the results between MARS and the Kalman filter based approach 
are shown in the following table 

Bll B12 All Al2 ell C12 

mean% -.64 1.69 -.64 2.38 -0.2 4.5 
mean abs% 4.61 4.22 4.61 5.3 3.5 5.3 
std % 6.26 5.11 6.26 6.25 4.7 4.9 

where 
Bll = Batch Tuning: tuning model ( forgetting factors =1 in adaption) on the 
training data 
B12 = Batch Tuning: running tuned model on the testing data 
All = Adaptation: on the training data 
Al2 = Adaptation: on the testing data 
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Cll = MARS on the training data 
Cu = MARS on the testing data, 

and mean% = mean«kmea, - kpred)/kmea,), 
meanabs% = mean(abs(kmea, - kpred)/kmea,)), 
std% = stdev(kmea, - kpred)/kmea,); where mean and stdev stands for the mean 
and the standard deviations respectively, and kmea" kpred represents the measured 
and predicted values of the yield stress respectively. 

It is found that the MARS based model performs extremely well compared with the 
other methods. The standard deviation of the prediction errors in a MARS model 
is considerably less than the corresponding standard deviation of prediction errors 
in a Kalman filter type batch or online tuning model on the testing data set. 

We have also compared MARS with both the CART based method and the C4.5 
based method. As both CART and C4.5 operate only on an output category, 
rather than a continuous output value, it is necessary to convert the yield stress 
into a category type of variable. We have chosen to divide equally the yield stress 
into 10 classes. With this modification, the CART and C4.5 methods are readily 
applicable. 

The following table summarises the results of this comparison. The values given are 
the percentage of the prediction error on the testing data set for various methods. 
In the case of MARS, we have converted the prediction error from a continuous 
variable into the corresponding classes as used in the CART and C4.5 methods. 

I Bayes I CART I C4.5 I MARS I 
65.4 12.99 16.14 6.2 

It is found that the MARS model is more consistent in predicting the output classes 
than either the CART method, the C4.5 based method, or the Bayesian classifier. 
The fact that the MARS model performs better than the CART model can be seen 
as a confirmation that the MARS model is a generalisation of the CART model 
(see Friedman [1991]). But it is rather surprising to see that the MARS model 
outperforms a Bayesian classifier. 

The results are similar over a number of other typical data sets, e.g., when the 
interpass time variable becomes significant. 

5 Conclusion 

It is found that MARS can be applied to model the platemill data with very good 
accuracy. In terms of predictive power on unseen data, it performs better than 
the more traditional methods, e.g., Kalman filter batch or online tuning methods, 
CART, C4.5 or Bayesian classifier. 

It is almost impossible to convert the MARS model into one given in section 1. The 
Hodgson-Collinson model places a breakpoint at a temperature of 925 deg G, while 
in the MARS model, the temperature breakpoints are found to be at 1017 degG 
and 1129 deg C respectively. Hence it is difficult to convert the MARS model into 
those given by the Hodgson-Collinson model, the Kalman filter type models or vice 
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versa. 

A possible improvement to the current MARS technique would be to restrict the 
breakpoints, so that they must exist within a temperature region where microstruc­
tural changes are known to occur. 
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