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Abstract 

Feedforward networks composed of units which compute a sigmoidal func­
tion of a weighted sum of their inputs have been much investigated. We 
tested the approximation and estimation capabilities of networks using 
functions more complex than sigmoids. Three classes of functions were 
tested: polynomials, rational functions, and flexible Fourier series. Un­
like sigmoids, these classes can fit non-monotonic functions. They were 
compared on three problems: prediction of Boston housing prices, the 
sunspot count, and robot arm inverse dynamics. The complex units at­
tained clearly superior performance on the robot arm problem, which is 
a highly non-monotonic, pure approximation problem. On the noisy and 
only mildly nonlinear Boston housing and sunspot problems, differences 
among the complex units were revealed; polynomials did poorly, whereas 
rationals and flexible Fourier series were comparable to sigmoids. 

1 Introduction 

A commonly studied neural architecture is the feedforward network in which each 
unit of the network computes a nonlinear function g( x) of a weighted sum of its 
inputs x = wtu. Generally this function is a sigmoid, such as g( x) = tanh x or 
g(x) = 1/(1 + e(x-9»). To these we compared units of a substantially different 
type: they also compute a nonlinear function of a weighted sum of their inputs, 
but the unit response function is able to fit a much higher degree of nonlinearity 
than can a sigmoid. The nonlinearities we considered were polynomials, rational 
functions (ratios of polynomials), and flexible Fourier series (sums of cosines.) Our 
comparisons were done in the context of two-layer networks consisting of one hidden 
layer of complex units and an output layer of a single linear unit. 
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This network architecture is similar to that built by projection pursuit regression 
(PPR) [1, 2], another technique for function approximation. The one difference is 
that in PPR the nonlinear function of the units of the hidden layer is a nonparamet­
ric smooth. This nonparametric smooth has two disadvantages for neural modeling: 
it has many parameters, and, as a smooth, it is easily trained only if desired output 
values are available for that particular unit. The latter property makes the use of 
smooths in multilayer networks inconvenient. If a parametrized function of a type 
suitable for one-dimensional function approximation is used instead of the nonpara­
metric smooth, then these disadvantages do not apply. The functions we used are 
all suitable for one-dimensional function approximation. 

2 Representation 

A few details of the representation of the unit response functions are worth noting. 

Polynomials: Each polynomial unit computed the function 

g(x) = alX + a2x2 + ... + anxn 

with x = wT u being the weighted sum of the input. A zero'th order term was not 
included in the above formula, since it would have been redundant among all the 
units. The zero'th order term was dealt with separately and only stored in one 
location. 

Rationals: A rational function representation was adopted which could not have 
zeros in the denominator. This representation used a sum of squares of polynomials, 
as follows: 

( ) ao + alx + ... + anxn 
9 x -

- 1 + (b o + b1x)2 + (b 2x + b3x2)2 + (b4x + b5x 2 + b6X3 + b7x4)2 + .,. 

This representation has the qualities that the denominator is never less than 1, 
and that n parameters are used to produce a denominator of degree n. If the above 
formula were continued the next terms in the denominator would be of degrees eight, 
sixteen, and thirty-two. This powers-of-two sequence was used for the following 
reason: of the 2( n - m) terms in the square of a polynomial p = am xm + '" + anxn , 
it is possible by manipulating am ... an to determine the n - m highest coefficients, 
with the exception that the very highest coefficient must be non-negative. Thus 
if we consider the coefficients of the polynomial that results from squaring and 
adding together the terms of the denominator of the above formula, the highest 
degree squared polynomial may be regarded as determining the highest half of the 
coefficients, the second highest degree polynomial may be regarded as determining 
the highest half of the rest of the coefficients, and so forth. This process cannot set 
all the coefficients arbitrarily; some must be non-negative. 

Flexible Fourier series: The flexible Fourier series units computed 
n 

g(x) = L: ai COS(bi X + Ci) 
i=O 

where the amplitudes ai, frequencies bi and phases Ci were unconstrained and could 
assume any value. 
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Sigmoids: We used the standard logistic function: 

g(x) = 1/(1 + e(x-9)) 

3 Training Method 

All the results presented here were trained with the Levenberg-Marquardt modifi­
cation of the Gauss-Newton nonlinear least squares algorithm. Stochastic gradient 
descent was also tried at first, but on the problems where the two were compared, 
Levenberg-Marquardt was much superior both in convergence time and in quality of 
result. Levenberg-Marquardt required substantially fewer iterations than stochas­
tic gradient descent to converge. However, it needs O(p2) space and O(p2n) time 
per iteration in a network with p parameters and n input examples, as compared 
to O(p) space and O(pn) time per epoch for stochastic gradient descent. Further 
details of the training method will be discussed in a longer paper. 

With some data sets, a weight decay term was added to the energy function to be 
optimized. The added term was of the form A L~=l w;. When weight decay was 
used, a range of values of A was tried for every network trained. 

Before training, all the data was normalized: each input variable was scaled so that 
its range was (-1,1), then scaled so that the maximum sum of squares of input 
variables for any example was 1. The output variable was scaled to have mean zero 
and mean absolute value 1. This helped the training algorithm, especially in the 
case of stochastic gradient descent. 

4 Results 

We present results of training our networks on three data sets: robot arm inverse 
dynamics, Boston housing data, and sunspot count prediction. The Boston and 
sunspot data sets are noisy, but have only mild nonlinearity. The robot arm inverse 
dynamics data has no noise, but a high degree of nonlinearity. Noise-free problems 
have low estimation error. Models for linear or mildly nonlinear problems typically 
have low approximation error. The robot arm inverse dynamics problem is thus a 
pure approximation problem, while performance on the noisy Boston and sunspots 
problems is limited more by estimation error than by approximation error. 

Figure la is a graph, as those used in PPR, of the unit response function of a one­
unit network trained on the Boston housing data. The x axis is a projection (a 
weighted sum of inputs wT u) of the 13-dimensional input space onto 1 dimension, 
using those weights chosen by the unit in training. The y axis is the fit to data. The 
response function of the unit is a sum ofthree cosines. Figure Ib is the superposition 
of five graphs of the five unit response functions used in a five-unit rational function 
solution (RMS error less than 2%) of the robot arm inverse dynamics problem. The 
domain for each curve lies along a different direction in the six-dimensional input 
space. Four of the five fits along the projection directions are non-monotonic, and 
thus can be fit only poorly by a sigmoid. 

Two different error measures are used in the following. The first is the RMS error, 
normalized so that error of 1 corresponds to no training. The second measure is the 
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square of the normalized RMS error, otherwise known as the fraction of explained 
varIance. We used whichever error measure was used in earlier work on that data 
set. 

4.1 Robot arm inverse dynamics 

This problem is the determination of the torque necessary at the joints of a two­
joint robot arm required to achieve a given acceleration of each segment of the 
arm, given each segment's velocity and position. There are six input variables to 
the network, and two output variables. This problem was treated as two separate 
estimation problems, one for the shoulder torque and one for the elbow torque. The 
shoulder torque was a slightly more difficult problem, for almost all networks. The 
1000 points in the training set covered the input space relatively thoroughly. This, 
together with the fact that the problem had no noise, meant that there was little 
difference between training set error and test set error. 

Polynomial networks of limited degree are not universal approximators, and that 
is quite evident on this data set; polynomial networks of low degree reached their 
minimum error after a few units. Figure 2a shows this. If polynomial, cosine, ra­
tional, and sigmoid networks are compared as in Figure 2b, leaving out low degree 
polynomials , the sigmoids have relatively high approximation error even for net­
works with 20 units. As shown in the following table, the complex units have more 
parameters each, but still get better performance with fewer parameters total. 

Type Units Parameters Error 
degree 7 polynomial 5 65 .024 
degree 6 rational 5 95 .027 
2 term cosine 6 73 .020 
sigmoid 10 81 .139 
sigmoid 20 161 .119 

Since the training set is noise-free, these errors represent pure approximation error . 
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The superior performance of the complex units on this problem is probably due to 
their ability to approximate non-monotonic functions. 

4.2 Boston housing 

The second data set is a benchmark for statistical algorithms: the prediction of 
Boston housing prices from 13 factors [3]. This data set contains 506 exemplars and 
is relatively simple; it can be approximated well with only a single unit. Networks 
of between one and six units were trained on this problem. Figure 3a is a graph 
of training set performance from networks trained on the entire data set; the error 
measure used was the fraction of explained variance. From this graph it is apparent 
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that training set performance does not vary greatly between different types of units, 
though networks with more units do better. 

On the test set there is a large difference. This is shown in Figure 3b. Each point 
on the graph is the average performance of ten networks of that type. Each network 
was trained using a different permutation of the data into test and training sets, the 
test set being 1/3 of the examples and the training set 2/3. It can be seen that the 
cosine nets perform the best, the sigmoid nets a close second, the rationals third, 
and the polynomials worst (with the error increasing quite a bit with increasing 
polynomial degree.) 

It should be noted that the distribution of errors is far from a normal distribution, 
and that the training set error gives little clue as to the test set error. The following 
table of errors, for nine networks of four units using a degree 5 polynomial, is 
somewhat typical: 

Set 
training 
test 

Error 

0.091 I 
0.395 

Our speculation on the cause of these extremely high errors is that polynomial ap­
proximations do not extrapolate well; if the prediction of some data point results in 
a polynomial being evaluated slightly outside the region on which the polynomial 
was trained, the error may be extremely high. Rational functions where the nu­
merator and denominator have equal degree have less of a problem with this, since 
asymptotically they are constant. However, over small intervals they can have the 
extrapolation characteristics of polynomials. Cosines are bounded, and so, though 
they may not extrapolate well if the function is not somewhat periodic, at least do 
not reach large values like polynomials. 

4.3 Sunspots 

The third problem was the prediction of the average monthly sunspot count in a 
given year from the values of the previous twelve years. We followed previous work 
in using as our error measure the fraction of variance explained, and in using as 
the training set the years 1700 through 1920 and as the test set the years 1921 
through 1955. This was a relatively easy test set - every network of one unit which 
we trained (whether sigmoid, polynomial, rational, or cosine) had, in each of ten 
runs, a training set error between .147 and .153 and a test set error between .105 
and .111. For comparison, the best test set error achieved by us or previous testers 
was about .085. A similar set of runs was done as those for the Boston housing 
data, but using at most four units; similar results were obtained. Figure 4a shows 
training set error and Figure 4b shows test set error on this problem. 

4.4 Weight Decay 

The performance of almost all networks was improved by some amount of weight 
decay. Figure 5 contains graphs of test set error for sigmoidal and polynomial units, 
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using various values of the weight decay parameter A. For the sigmoids, very little 
weight decay seems to be needed to give good results, and there is an order of 
magnitude range (between .001 and .01) which produces close to optimal results. 
For polynomials of degree 5, more weight decay seems to be necessary for good 
results; in fact, the highest value of weight decay is the best. Since very high values 
of weight decay are needed, and at those values there is little improvement over 
using a single unit, it may be supposed that using those values of weight decay 
restricts the multiple units to producing a very similar solution to the one-unit 
solution. Figure 6 contains the corresponding graphs for sunspots. Weight decay 
seems to help less here for the sigmoids, but for the polynomials, moderate amounts 
of weight decay produce an improvement over the one-unit solution. 

Acknowledgements 

The authors would like to acknowledge support from ONR grant N00014-89-J-
1228, AFOSR grant 89-0478, and a fellowship from the John and Fannie Hertz 
Foundation. The robot arm data set was provided by Chris Atkeson. 

References 

[1] J. H. Friedman, W. Stuetzle, "Projection Pursuit Regression", Journal of the 
American Statistical Association, December 1981, Volume 76, Number 376, 
817-823 

[2] P. J. Huber, "Projection Pursuit", The Annals of Statistics, 1985 Vol. 13 No. 
2,435-475 

[3] L. Breiman et aI, Classification and Regression Trees, Wadsworth and Brooks, 
1984, pp217-220 



Networks with Learned Unit Response Functions 

Boston housin 
0.30 r-T"=::...:..:;.:;:....:r:-=::;.5I~;=::::..:;=:-;;..:..:..::.....;;-=..:.!ar:......::=~..., 

hi decay 

0.25 

~0.20 
• 

0.15 

00 
+.0001 
0.001 
0.01 
X.l 
·.3 

1.0 

0.5 

00 
+.0001 
0.001 
0.01 
)(.1 
'.3 

Figure 5: Boston housing test error with various amounts of weight decay 

0.16 
moids wilh wei hl decay 

O.IB 
00 
+.0001 
0 .001 
0 .01 
><.1 
· .3 0. 111 

0.14 
1.8 

0.1 • 

.. 
1: 0.12 
D 

~ 0. 12 

~~ 0.10 

0. 10 sea ::::::,. 

0.08 
2 3 <4 

0.08 
2 3 

Dum be .. of 1IJlIt, Dumb.,. 01 WIll' 

Figure 6: Sunspot test error with various amounts of weight decay 

1055 



Perturbing Hebbian Rules 

Peter Dayan 
CNL, The Salk Institute 
PO Box 85800 
San Diego CA 92186-5800, USA 
dayan~helrnholtz.sdsc.edu 

Geoffrey Goodhill 
COGS 

University of Sussex, Falmer 
Brighton BNl 9QN, UK 

geoffg~cogs.susx.ac.uk 

Abstract 

Recently Linsker [2] and MacKay and Miller [3,4] have analysed Hebbian 
correlational rules for synaptic development in the visual system, and 
Miller [5,8] has studied such rules in the case of two populations of fibres 
(particularly two eyes). Miller's analysis has so far assumed that each of 
the two populations has exactly the same correlational structure. Relaxing 
this constraint by considering the effects of small perturbative correlations 
within and between eyes permits study of the stability of the solutions. 
We predict circumstances in which qualitative changes are seen, including 
the production of binocularly rather than monocularly driven units. 

1 INTRODUCTION 

Linsker [2] studied how a Hebbian correlational rule could predict the development 
of certain receptive field structures seen in the visual system. MacKay and Miller 
[3,4] pointed out that the form of this learning rule meant that it could be analysed 
in terms of the eigenvectors of the matrix of time-averaged presyna ptic correlations. 
Miller [5,8, 7] independently studied a similar correlational rule for the case of two 
eyes (or more generally two populations), explaining how cells develop in VI 
that are ultimately responsive to only one eye, despite starting off as responsive 
to both. This process is again driven by the eigenvectors and eigenvalues of 
the developmental equation, and Miller [7] relates Linsker's model to the two 
population case. 

Miller's analysis so far assumes that the correlations of activity within each popula­
tion are identical. This special case simplifies the analysis enabling the projections 
from the two eyes to be separated out into sum and difference variables . In general, 
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one would expect the correlations to differ slightly, and for correlations between the 
eyes to be not exactly zero. We analyse how such perturbations affect the eigenvec­
tors and eigenvalues of the developmental equation, and are able to explain some 
of the results found empirically by Miller [6]. 

Further details on this analysis and on the relationship between Hebbian and 
non-Hebbian models of the development of ocular dominance and orientation 
selectivity can be found in Goodhill (1991). 

2 THE EQUATION 

MacKay and Miller [3,4] study Linsker's [2] developmental equation in the form: 

w = (Q + k2J)W+ kIn 

where W = [wd, i E [1, n] are the weights from the units in one layer 'R, to a 
particular unit in the next layer S, Q is the covariance matrix of the activities of the 
units in layer'R" J is the matrix hi = 1, Vi, j, and n is the 'DC' vector ni = 1, Vi. 

The equivalent for two populations of cells is: 

( :~ ) = ( g~! ~~~ g~! ~~~ ) ( :~ ) + kl ( ~ ) 

where Ql gives the covariance between cells within the first population, Q2 gives 
that between cells within the second, and Qc (assumed symmetric) gives the covari­
ance between cells in the two populations. Define Q. as this full, two population, 
development matrix. 

Miller studies the case in which Ql = Q2 = Q and Qc is generally zero or slightly 
negative. Then the development of WI - W2 (which Miller calls So) and WI + W2 
(SS) separate; for Qc = 0, these go like: 

SS 0 SSS 
bt = QSo and St = (Q + 2k2J)SS + 2kln. 

and, up to various forms of normalisation and/or weight saturation, the patterns 
of dominance between the two populations are determined by the initial value 
and the fastest growing components of So. If upper and lower weight saturation 
limits are reached at roughly the same time (Berns, personal communication), the 
conventional assumption that the fastest growing eigenvectors of So dominate the 
terminal state is borne out. 

The starting condition Miller adopts has WI - W2 = €' a and WI + W2 = b, where 
€' is small, and a and b are 0(1). Weights are constrained to be positive, and 
saturate at some upper limit. Also, additive normalisation is applied throughout 
development, which affects the growth of the SS (but not the SO) modes. As 
discussed by MacKay and Miller [3,4]' this is approximately accommodated in the 
k2J component. 

Mackay and Miller analyse the eigendecomposition of Q + k2J for general and 
radially symmetric covariance matrices Q and all values of k2. It turns out that the 
eigendecomposition of Q. for the case Ql = Q2 = Q and Qc = 0 (that studied by 
Miller) is given in table form by: 
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E-vector E-value Conditions 
(Xi, xt) Ai QXi = AiXi n'Xi = 0 

(Xi, -xl) Ai QXi = AiXi n.Xi = 0 
(Yi, -yt) ~i QYi = ~iYi n·Yi f. 0 
(Zit zl) 'Vi (Q + 2k2J)Zi = 'ViZi n.zi f. 0 

Figure 1 shows the matrix and the two key (y, -y) and (x, -x) eigenvectors. 

The details of the decomposition of Q. in this table are slightly obscured by de­
generacy in the eigendecomposition of Q + k2J. Also, for clarity, we write (Xi, Xi) 
for (Xi, Xi) T. A consequence of the first two rows in the table is that (l1Xi, aXi) is an 
eigenvector for any 11 and a; this becomes important later. 

That the development of SD and S5 separates can be seen in the (u, u) and (u, -u) 
forms of the eigenvectors. In Miller's terms the onset of dominance of one of the 
two populations is seen in the (u, -u) eigenvectors - dominance requires that ~j 
for the eigenvector whose elements are all of the same sign (one such exists for 
Miller's Q) is larger than the ~i and the Ai for all the other such eigenvectors. In 
particular, on pages 296-300 of [6], he shows various cases for which this does and 
one in which it does not happen. To understand how this comes about, we can 
treat the latter as a perturbed version of the former. 

3 PERTURBATIONS 

Consider the case in which there are small correlations between the projections 
and/ or small differences between the correlations within each projection. For 
instance, one of Miller's examples indicates that small within-eye anti-correlations 
can prevent the onset of dominance. This can be perturbatively analysed by setting 
Ql = Q + eEl, Q2 = Q + eE2 and Qe = eEe. Call the resulting matrix Q;. 

Two questions are relevant. Firstly, are the eigenvectors stable to this perturbation, 
ie are there vectors al and a2 such that (Ul + eal, U2 + ea2) is an eigenvector of 
Q; if (Ul, U2) is an eigenvector of Q. with eigenvalue 4>? Secondly, how do the 
eigenvalues change? 

One way to calculate this is to consider the equation the perturbed eigenvector 
must satisfy:l 

Q€ ( Ul + eal ) = (4) + elP) ( Ul + eal ) 
• U2 + ea2 U2 + ea2 

and look for conditions on Ul and U2 and the values of al, a2 and lP by equating 
the O( e) terms. We now consider a specific exam pIe. Using the notation of the 
table above, (Yi + eal, -Yi + ea2) is an eigenvector with eigenvalue ~i + elPi if 

(Q - ~i1) al + k2J(al + a2) -(El- Ee - lPd)Yi, and 
(Q - ~i1) a2 + k2J (al + a2) = - (Ee - E2 + lPiI)Yi. 

Subtracting these two implies that 

(Q - ~i1) (al - a2) = - (El - 2Ee + E2 - 2lPi1) Yi. 

lThis is a standard method for such linear systems, eg in quantum mechanics. 
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However, Y{ (Q - lii I) = 0, since Q is symmetric and Yi is an eigenvector with 
eigenvalue Iii, so multiplying on the left by yl, we require that 

2lViyJ Yi = y[ (E 1 - 2Ee + E2) Yi 

which sets the value of lVi' Therefore (Yit -yt) is stable in the required manner. 

Similarly (Zit Zi) is stable too, with an equivalent perturbation to its eigenvalue. 
However the pair (Xit xt) and (Xit -Xi) are not stable - the degeneracy from their 
having the same eigenvalue is broken, and two specific eigenvectors, (~Xit (3iXi) 
and (- (3iXit ~Xi) are stable, for particular values (Xi and (3i' This means that to first 
order, SD and SS no longer separate, and the full, two-population, matrix must be 
solved. 

To model Miller's results, call Q;,m the special case of Q; for which El = E2 = E 
and Ee = O. Also, assume that the Xit Yi and Zi are normalised, let el (u) = uTE 1 u t 
etc, and define 1'(u) = (el (u) - e2(u) )/2ee(u), for ee (u) =f. 0, and 1'i = 1'(xt). Then 
we have 

(1) 

and the eigenvalues are: 

Eigenvalue for case: 
E-vector Q. Q;,m 9: 

((XiXit (3iXt) Ai Ai + eel Xi Ai + e ell xl) + e2(Xi) + =i]/Z 
( - (3iXit (XiX;.) Ai Ai + eel Xi Ai - e ell xd + e2(xd + =d/2 

("Yit -yt) Iii Iii + eel Yd Iii + e[ el Yi + e2 Yi - Zee YdJ/Z 
(Zit zt) 'Vi 'Vi + eel Zi 'Vi + e el Zi ) + e2 Zi +Zee zt)J/2 

where =i = v'[ el (Xi) - e2(Xi)]2 + 4ee(xi)2. For the case Miller treats, since E 1 = E2, 
the degeneracy in the original solution is preserved, ie the perturbed versions of 
(Xit xt) and (Xit -xt) have the same eigenvalues. Therefore the SD and SS modes 
still separate. 

This perturbed eigendecomposition suffices to show how small additional correla­
tions affect the solutions. We will give three examples. The case mentioned above 
on page 299 of [6], shows how small same-eye anti-correlations within the radius 
of the arbor function cause a particular (Yit -yt) eigenvector (Le. one for which 
all the components of Yi have the same sign) to change from growing faster than 
a (Xit -xt) (for which some components of Xi are positive and some negative to 
ensure that n.Xi = 0) to growing slower than it, converting a monocular solution 
to a binocular one. 

In our terms, this is the Q;' m case, with E 1 a negative matrix. Given the conditions 
on signs of their components, el (yt) is more negative than el(xi), and so the 
eigenvalue for the perturbed (Yit -Yi) would be expected to decrease more than 
that for the perturbed (Xit -xt). This is exactly what is found. Different binocular 
eigensolutions are affected by different amounts, and it is typically a delicate issue 
as to which will ultimately prevail. Figure 2 shows a sample perturbed matrix for 
which dominance will not develop. If the change in the correlations is large (0(1 ), 
then the eigenfunctions can change shape (eg Is becomes 2s in the notation of [4]). 
We do not address this here, since we are considering only changes of O( e). 
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Figure 1: Unperturbed two-eye correlation matrix and (y, -y), (x, -x) eigenvec­
tors. Eigenvalues are 7.1 and 6.4 respectively. 

80 

Figure 2: Same-eye anti-correlation matrix and eigenvectors. (y, -y), (x, -x) eigen­
values are 4.8 and 5.4 respectivel)" and so the order has swapped. 
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Positive opposite-eyecorrelations can have exactly the same effect. This time ec(yd 
is greater than ec(xd, and so, again, the eigenvalue for the perturbed (Yi. -Yd 
would be expected to decrease more than that for the perturbed (Xi. -Xi)' Figure 3 
shows an example which is infelicitous for dominance. 

The third case is for general perturbations in Q!. Now the mere signs of the 
components of the eigenvectors are not enough to predict which will be affected 
more. Figure 4 gives an example for which ocular dominance will still occur. Note 
that the (Xi. -Xi) eigenvector is no longer stable, and has been replaced by one of 
the form (~Xi. f3i.xd. 

If general perturbations of the same order of magnitude as the difference between 
WI and W2 (ie €' ~ €) are applied, the OCi and f3i terms complicate Miller's So 
analysis to first order. Let Wl(O) - W2(0) = €a and apply Q! as an iteration matrix. 
WI (n) -w2(n), the difference between the projections aftern iterations has no 0(1) 
component, but two sets of O(€) components; {21l-f (a.Yi) yd, and 

{ Af[l + €(Ti + 3i)/2Adn (OCiXi.Wl(O) + f3iXi.W2(0)) (OCi - f3i)Xi -
Af[l + €(Ti - 3i)/2Ai]n (OCiXi.W2(0) - f3iXi.Wl (0)) (OCi + f3i)Xi } 

where Ti = el(xi) + e2(xd. Collecting the terms in this expression, and using 
equation 1, we derive 

{ Af [(oct + f3f)xi. a + 2n ~~),i~f3iXi.b 1 Xi} 

where b = Wl(O) + W2(0). The second part of this expression depends on n, 
and is substantial because Wl(O) + W2(0) is 0(1). Such a term does not appear 
in the unperturbed system, and can bias the competition between the Yi and the 
Xi eigenvectors, in particular towards the binocular solutions. Again, its precise 
effects will be sensitive to the unperturbed eigenvalues. 

4 CONCLUSIONS 

Perturbation analysis applied to simple Hebbian correlational learning rules reveals 
the following: 

• Introducing small anti-correlations within each eye causes a tendency toward 
binocularity. This agrees with the results of Miller. 

• Introducing small positive correlations between the eyes (as will inevitably 
occur once they experience a natural environment) has the same effect. 

• The overall eigensolution is not stable to small perturbations that make the 
correlational structure of the two eyes unequal. This also produces interesting 
effects on the growth rates of the eigenvectors concerned, given the initial 
conditions of approximately equivalent projections from both eyes. 
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Figure 3: Opposite-eye positive correlation matrix and eigenvectors. Eigenvalues 
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so 

Figure 4: The effect of random perturbations to the matrix. Although the order is 
restored (eigenvalues are 7.1 and 6.4)1 note the ((xx, (3x) eigenvector. 
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