
Computing with Almost Optimal Size Neural 
Networks 

Kai-Yeung Siu 
Dept. of Electrical & Compo Engineering 

University of California, Irvine 
Irvine, CA 92717 

V wani Roychowdhury 
School of Electrical Engineering 

Purdue University 
West Lafayette, IN 47907 

Thomas Kailath 
Information Systems Laboratory 

Stanford University 
Stanford, CA 94305 

Abstract 

Artificial neural networks are comprised of an interconnected collection 
of certain nonlinear devices; examples of commonly used devices include 
linear threshold elements, sigmoidal elements and radial-basis elements. 
We employ results from harmonic analysis and the theory of rational ap­
proximation to obtain almost tight lower bounds on the size (i.e. number 
of elements) of neural networks. The class of neural networks to which 
our techniques can be applied is quite general; it includes any feedforward 
network in which each element can be piecewise approximated by a low 
degree rational function. For example, we prove that any depth-( d + 1) 
network of sigmoidal units or linear threshold elements computing the par­
ity function of n variables must have O(dnl/d-£) size, for any fixed i > O. 
In addition, we prove that this lower bound is almost tight by showing 
that the parity function can be computed with O(dnl/d) sigmoidal units 
or linear threshold elements in a depth-(d + 1) network. These almost 
tight bounds are the first known complexity results on the size of neural 
networks with depth more than two. Our lower bound techniques yield 
a unified approach to the complexity analysis of various models of neural 
networks with feedforward structures. Moreover, our results indicate that 
in the context of computing highly oscillating symmetric Boolean func-
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tions, networks of continuous-output units such as sigmoidal elements do 
not offer significant reduction in size compared with networks of linear 
threshold elements of binary outputs. 

1 Introduction 

Recently, artificial neural networks have found wide applications in many areas 
that require solutions to nonlinear problems. One reason for such success is the 
existence of good "learning" or "training" algorithms such as Backpropagation [13] 
that provide solutions to many problems for which traditional attacks have failed. 
At a more fundamental level, the computational power of neural networks comes 
from the fact that each basic processing element computes a nonlinear function 
of its inputs. Networks of these nonlinear elements can yield solutions to highly 
complex and nonlinear problems. On the other hand, because of the nonlinear 
features, it is very difficult to study the fundamental limitations and capabilities of 
neural networks. Undoubtedly, any significant progress in the applications of neural 
networks must require a deeper understanding of their computational properties. 

We employ classical tools such as harmonic analysis and rational approximation 
to derive new results on the computational complexity of neural networks. The 
class of neural networks to which our techniques can be applied is quite large; it 
includes feedforward networks of sigmoidal elements, linear threshold elements, and 
more generally, elements that can be piecewise approximated by low degree rational 
functions. 

1.1 Background, Related Work and Definitions 

A widely accepted model of neural networks is the feedforward multilayer network 
in which the basic processing element is a sigmoidal element. A sigmoidal element 
computes a function I(X) of its input variables X = (Xl, ... , xn) such that 

2 1- e-F(X) 
I(X) = u(F(X» = 1 + e-F(X) - 1 = 1 + e-F(X) 

where 
s 

F(X) = L: Wi • Xi + WOo 

i=l 

The real valued coefficients Wi are commonly referred to as the weights of the sig­
moidal function. The case that is of most interest to us is when the inputs are 
binary, i.e., X E {l, _l}n. We shall refer to this model as sigmoidal network. 

Another common feed forward multilayer model is one in which each basic processing 
unit computes a binary linear threshold function sgn(F(X», where F(X) is the 
same as above, and 

sgn(F(X» = { _~ if F(X) ~ 0 
if F(X) < 0 

This model is often called the threshold circuit in the literature and recently has 
been studied intensively in the field of computer science. 
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The size of a network/circuit is the number of elements. The depth of a net­
work/circuit is the longest path from any input gate to the output gates. We can 
arrange the gates in layers so that all gates in the same layer compute concurrently. 
(A single element can be considered as a one-layer network.) Each layer costs a 
unit delay in the computation. The depth of the network (which is the number of 
layers) can therefore be interpreted as the time for (parallel) computation. 

It has been established that threshold circuit is a very powerful model of computa­
tion. Many functions of common interest such as multiplication, division and sort­
ing can be computed in polynomial-size threshold circuits of small constant depth 
[19, 18, 21]. While many upper bound results for threshold circuits are known in 
the literature, lower bound results have only been established for restricted cases of 
threshold circuits. Most of the existing lower bound techniques [10, 17, 16] apply 
only to depth-2 threshold circuits. In [16], novel techniques which utilized analyti­
cal tools from the theory of rational approximation were developed to obtain lower 
bounds on the size of depth-2 threshold circuits that compute the parity function. 
In [20], we generalized the methods of rational approximation and our earlier tech­
niques based on harmonic analysis to obtain the first known almost tight lower 
bounds on the size of threshold circuits with depth more than two. In this paper, 
the techniques are further generalized to yield almost tight lower bounds on the 
size of a more general class of neural networks in which each element computes a 
continuous function. 

The presentation of this paper will be divided into two parts. In the first part, we 
shall focus on results concerning threshold circuits. In the second part, the lower 
bound results presented in the first part are generalized and shown to be valid even 
when the elements of the networks can assume continuous output values. The class 
of networks for which such techniques can be applied include networks of sigmoidal 
elements and radial basis elements. Due to space limitations, we shall only state 
some of the important results; further results and detailed proofs will appear in an 
extended paper. 

Before we present our main results, we shall give formal definitions of the neural 
network models and introduce some of the Boolean functions, which will be used 
to explore the computational power of the various networks. To present our results 
in a coherent fashion, we define throughout this paper a Boolean function as f : 
{I, _l}n -+ {I, -I}, instead of using the usual {O, I} notation. 

Definition 1 A threshold circuit is a Boolean circuit in which every gate com­
putes a linear threshold function with an additional property: the weights are inte­
gers all bounded by a polynomial in n. 0 

Remark 1 The assumption that the weights in the threshold circuits are integers 
bounded by a polynomial is common in the literature. In fact, the best known lower 
bound result on depth-2 threshold circuit [10] does not apply to the case where 
exponentially large weights are allowed. On the other hand, such assumption does 
not pose any restriction as far as constant-depth and polynomial-size is concerned. 
In other words, the class of constant-depth polynomial-size threshold circuits (TeO) 
remains the same when the weights are allowed to be arbitrary. This result was 
implicit in [4] and was improved in [18] by showing that any depth-d threshold circuit 
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with arbitrary weights can be simulated by a depth-(2d + 1) threshold circuit of 
polynomially bounded weights at the expense of a polynomial increase in size. More 
recently, it has been shown that any polynomial-size depth-d threshold circuit with 
arbitrary weights can be simulated by a polynomial-size depth-(2d + 1) threshold 
circuit. 0 

In addition to Boolean circuits, we shall also be interested in the computation of 
Boolean functions by networks of continuous-valued elements. To formalize this 
notion, we adopt the following definitions [12]: 

Definition 2 Let 'Y : R - R. A 'Y element with weights WI, ... , Wm E Rand 
threshold t is defined to be an element that computes the function 'Y(E~1 WiX; -t) 
where (Xl. ... , xm) is the input. A 'Y-network is a feedforward network of'Y elements 
with an additional property: the weights Wi are all bounded by a polynomial in n. 
o 

For example, when 'Y is the sigmoidal function O'(x), then we have a sigmoidal 
network, a common model of neural network. In fact, a threshold circuit can also 
be viewed as a special case of'Y network where 'Y is the sgn function. 

Definition 3 A 'Y-network C is said to compute a Boolean function f : 
{I,-l}n - {I, -I} with separation (. > 0 if there is some tc E R such that 
for any input X = (Xl, ... , Xm) to the network C, the output element of C outputs 
a value C(X) with the following property: If f(X) = 1, then C(X) ~ tc + £. If 
f(X) = -1, then C(X) ~ tc - £. 0 

Remark 2 As pointed out in [12], computing with 'Y networks without separation 
at the output element is less interesting because an infinitesimal change in the 
output of any 'Y element may change the output bit. In this paper, we shall be 
mainly interested in computations on 'Y networks Cn with separation at least O(n-k) 
for some fixed k > o. This together with the assumption of polynomially bounded 
weights makes the complexity class of constant-depth polynomial-size 'Y networks 
quite robust and more interesting to study from a theoretical point of view (see 
[12]). 0 

Definition 4 The PARITY function of X = (x}, X2, .. . , xn) E {I, _l}n is de­
fined to be -1 if the number of -1 in the variables x I, ... , Xn is odd and + 1 otherwise. 
Note that this function can be represented as the product n~=l Xi. 0 

Definition 5 The Complete Quadratic (CQ) function [3] is defined to be the 
following: 

CQ(X) = (Xl" X2) EEl (Xl" X3) EEl •.• EEl (Xn-l " xn) 

i.e. CQ(X) is the sum modulo 2 of all AND's between the (~) pairs of distinct 
variables. Note that it is also a symmetric function. 0 

2 Results for Threshold Circuits 

Fo. the lower bound results on threshold circuits, a central idea of our proof is the 
use of a result from the theory of rational approximation which states the following 
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[9]: the function sgn(x) can be approximated with an error of O(e-ck/log(l/€») by 
a rational function of degree k for 0 < f < Ixl < 1. (In [16], they apply an 
equivalent result [15] that gives an approximation to the function Ixl instead of 
sgn(x).) This result allows us to approximate several layers of threshold gates by a 
rational function oflow (i.e. logarithmic) degree when the size of the circuit is small. 
Then by upper bounding the degree of the rational function that approximates the 
PARITY function, we give a lower bound on the size of the circuit. We also give 
similar lower bound on the Complete Quadratic (CQ) function using the same 
degree argument. By generalizing the 'telescoping' techniques in [14], we show an 
almost matching upper bound on the size of the circuits computing the PARITY 
and the CQ functions. We also examine circuits in which additional gates other 
than the threshold gates are allowed and generalize the lower bound results in this 
model. For this purpose, we introduce tools from harmonic analysis of Boolean 
functions [11, 3, 18, 17]. We define the class of functions called SP such that 
every function in SP can be closely approximated by a sparse polynomial for all 
inputs. For example, it can be shown that [18] the class SP contains functions 
AND, OR, COMPARISON and ADDITION, and more generally, functions that 
have polynomially bounded spectral norms. 

The main results on threshold circuits can be summarized by the following theo­
rems. First we present an explicit construction for implementing PARITY. This 
construction applies to any 'periodic' symmetric function, such as the CQ function. 

Theorem 1 For every d < logn, there exists a depth-(d + 1) threshold circuit 
with O(dn1/ d ) gates that computes the PARITY function. 0 

We next show that any depth-(d + 1) threshold circuit computing the PARITY 
function or the CQ function must have size O(dnl/d-£) for any fixed f > o. This 
result also holds for any function that has strong degree O(n). 

Theorem 2 Any depth-(d + 1) threshold circuit computing the PARITY (CQ) 
function must have size O(dnl/d / log:! n). 0 

We also consider threshold circuits that approximate the PARITY and the CQ 
functions when we have random inputs which are uniformly distributed. We derive 
almost tight upper and lower bounds on the size of the approximating threshold 
circuits. 

We next consider threshold circuits with additional gates and prove the following 
result. 

Theorem 3 Suppose in addition to threshold gates, we have polynomially many 
gates E SP in the first layer of a depth-2 threshold circuit that computes the CQ 
function. Then the number of threshold gates required in the circuit is O(n/ log2 n). 
o 

This result can be extended to higher depth circuits when additional gates that 
have low degree polynomial approximations are allowed. 

Remark 3 Recently Beigel [2], using techniques similar to ours and the fact 



24 Siu, Roychowdhury, and Kailath 

that the PARITY function cannot be computed in polynomial-size constant-depth 
circuits of AND, OR gates [7], has shown that any constant-depth threshold circuit 

• 0(1) 
With (2n ) AND, OR gates but only o(log n) threshold gates cannot compute the 
PARITY function of n variables. 0 

3 Results for ,-Networks 

In the second part of the paper, we consider the computational power of networks 
of continuous-output elements. A celebrated result in this area was obtained by 
Cybenko [5]. It was shown in [5] that any continuous function over a compact 
domain can be closely approximated by sigmoidal networks with two layers. More 
recently, Barron [1] has significantly strengthened this result by showing that a 
wide class of functions can be approximated with mean squared error of O( n -1 ) 

by tw<rlayer sigmoidal networks of only n elements. Here we are interested in 
networks of continuous-output elements computing Boolean functions instead of 
continuous functions. See Section 1.1 for a precise definition of computation of 
Boolean functions by a "Y-network. 

While quite a few techniques have been developed for deriving lower bound results 
on the complexity of threshold circuits, an understanding of the power and the 
limitation of networks of continuous elements such as sigmoidal networks, especially 
as compared to threshold circuits, have not been explored. For example, we would 
like to answer questions such as: how much added computational power does one 
gain by using sigmoidal elements or other continuous elements to compute Boolean 
functions? Can the size of the network be reduced by using sigmoidal elements 
instead of threshold elements? 

It was shown in [12] when the depth of the network is restricted to be two, then 
there is a Boolean function of n variables that can be computed in a depth-2 sig­
moidal network with a fixed number of elements, but requires a depth-2 threshold 
circuit with size that increases at least logarithmic in n. In other words, in the 
restricted case of depth-2 network, one can reduce the size of the network at least 
a logarithmic factor by using continuous elements such as the sigmoidal elements 
instead of threshold elements with binary output values. This result has been re­
cently improved in [6], where it is shown that there exists an explicit function that 
can be computed using only a constant number of sigmoidal gates, and that any 
threshold circuit (irrespective of the depth) computing it must have size !l(log n). 

These results motivate the following question: Can we characterize a class of func­
tions for which the threshold circuits computing the functions have sizes at most a 
logarithmic factor larger than the sizes of the sigmoidal networks computing them? 
Because of the monotonicity of the sigmoidal functions, we do not expect that 
there is substantial gain in the computational power over the threshold elements 
for computing the class of highly oscillating functions. 

It is natural to extend our techniques to sigmoidal networks by approximating 
sigmoidal functions with rational functions. We derive a key lemma that yields 
a single low degree rational approximation to any function that can be piecewise 
approximated by low degree rational functions. 
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Lemma 1 Let f be a continuous function over A = [a, b]. Let Al = [a, c] and 
A2 = [c,b], a < c < b. Denote II 9 II~,= sUP~e~ Ig(x)l. Suppose there are rational 

• I 

functIOns rl and r2 such that 

II / - rj lI~i ~ { 
where { > O. Then for each l> 0 and 6 > 0, there is a rational function r such that 

b - a II / II~ 
deg r ~ 2 deg rl + 2 deg r2 + Gllog(e + -6-) log(e + l) (1) 

where w(fj c5)~ is the modulus of continuity of / over A, G1 is a constant. 0 

The above lemma is applied to show that both sigmoidal functions and radial basis 
functions can be closely approximated by low degree rational functions. In fact 
the above lemma can be generalized to show that if a continuous function can 
be piecewise approximated by low degree rational functions over k = 10gO(I) n 
consecutive intervals, then it can be approximated by a single low degree rational 
function over the union of these intervals. 

These generalized approximation results enable us to show that many of our lower 
bound results on threshold circuits can be carried over to sigmoidal networks. Prior 
to our work, there was no nontrivial lower bound on the size of sigmoidal networks 
with depth more than two. In fact, we can generalize our results to neural networks 
whose elements can be piecewise approximated by low degree rational functions. 
We show in this paper that for symmetric Boolean functions of large strong degree 
(e.g. the parity function), any depth-d network whose elements can be piecewise 
approximated by low degree rational functions requires almost the same size as a 
depth-d threshold circuit computing the function. 

In particular, if it is the class of polynomially bounded functions that are piecewise 
continuous and can be piecewise approximated with low degree rational functions, 
then we prove the following theorem. 

Theorem 4 Let W be any depth-Cd + 1) neural network in which each element 
Vj computes a function Ji (Li WiXi) where Ji E it and Li Iwi! ~ nOel) for each 
element. If the network W computes the PARITY function of n variables with 
separation 6, where 0 < 6 = n(n- k ) for some k > 0, then for any fixed { > 0, W 
must have size n(dn 1/ d-(). 0 
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