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Abstract 

We present a general formulation for a network of stochastic di­
rectional units. This formulation is an extension of the Boltzmann 
machine in which the units are not binary, but take on values in a 
cyclic range, between 0 and 271' radians. The state of each unit in 
a Directional-Unit Boltzmann Machine (DUBM) is described by a 
complex variable, where the phase component specifies a direction; 
the weights are also complex variables. We associate a quadratic 
energy function, and corresponding probability, with each DUBM 

configuration. The conditional distribution of a unit's stochastic 
state is a circular version of the Gaussian probability distribution, 
known as the von Mises distribution. In a mean-field approxima­
tion to a stochastic DUBM, the phase component of a unit's state 
represents its mean direction, and the magnitude component spec­
ifies the degree of certainty associated with this direction. This 
combination of a value and a certainty provides additional repre­
sentational power in a unit. We describe a learning algorithm and 
simulations that demonstrate a mean-field DUBM'S ability to learn 
interesting mappings. 

Many kinds of information can naturally be represented in terms of angular, or 
directional, variables. A circular range forms a suitable representation for explicitly 
directional information, such as wind direction, as well as for information where 
the underlying range is periodic, such as days of the week or months of the year. 
In computer vision, tangent fields and optic flow fields are represented as fields of 
oriented line segments, each of which can be described by a magnitude and direction. 
Directions can also be used to represent a set of symbolic labels, e.g., object label 
A at 0, and object label B at 71'/2 radians. We discuss below some advantages of 
representing symbolic labels with directional units. 
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These and many other phenomena can be usefully encoded using a directional 
representation-a polar coordinate representation of complex values in which the 
phase parameter indicates a direction between 0 and 27r radians. We have devised a 
general formulation of networks of stochastic directional units. This paper describes 
a directional-unit Boltzmann machine (DUBM), which is a novel generalization of a 
Boltzmann machine (Ackley, Hinton and Sejnowski, 1985) in which the units are 
not binary, but instead take on directional values between 0 and 27r. 

1 STOCHASTIC DUBM 

A stochastic directional unit takes on values on the unit circle. We associate with 
unit j a random variable Zj; a particular state of j is described by a complex 
number with magnitude one and direction, or phase Tj: Zj = eiTj • 

The weights of a DUBM also take on complex values. The weight from unit k to 
unit j is: Wj k = hj ke ifJ'k . We constrain the weight matrix W to be Hermitian: 
WT = W*, where the diagonal elements of the matrix are zero, and the asterisk 
indicates the complex conjugate operation. Note that if the components are real, 
then W T = W, which is a real symmetric matrix. Thus, the Hermitian form is a 
natural generalization of weight symmetry to the complex domain. 

This definition of W leads to a Hermitian quadratic form that generalizes the real 
quadratic form of the Hopfield energy function: 

E(z) = -1/2 z*TWz = -1/2 LZjZZWjk 
j,k 

(1) 

where z is the vector of the units' complex states in a particular global configuration. 
Noest (1988) independently proposed this energy function. It is similar to that 
used in Fradkin, Huberman, and Shenker's (1978) generalization of the XY model 
of statistical mechanics to allow arbitary weight phases OJ k, and coupled oscillator 
models, e.g., Baldi and Meir (1990). 

We can define a probability distribution over the possible states of a stochastic 
network using the Boltzmann factor. In a DUBM, we can describe the energy as a 
function of the state of a particular unit j: 

We define 

E(Zj = Zj) = -1/2 [L ZjZZWjk + L ZkZIWkj] 
k k 

Xj = LZkwlk 
k 

to be the net input to unit j, where aj and O:j denote the magnitude and phase of 
x j, respectively. 

Applying the Boltzmann factor, we find that the probability that unit j IS 10 a 
particular state is proportional to: 

p(Zj = Zj) ex e-/3E(Zj=zj) = e/3aj COS(Tj-crj) 

where f3 is the reciprocal of the system temperature. 

(2) 
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Figure 1: A circular normal density function laid over a unit circle. The dots 
along the circle represent samples of the circular normal random variable Zj. The 
expected direction of Zj, Tj, is 7r /4; rj is its resultant length. 

This probability distribution for a unit's state corresponds to a distribution known 
as the von Mises, or circular normal, distribution (Mardia, 1972). Two parameters 
completely characterize this distribution: a mean direction r = (0,27r] and a con­
centration parameter m > 0 that behaves like the reciprocal of the variance of a 
Gaussian distribution on a linear random variable. The probability density function 
of a circular normal random variable Z is l : 

( ) 1 em cos( T-T) 
p T; r, m = () 27r1o m 

(3) 

From Equations 2 and 3, we see that if a unit adopts states according to its contribu­
tion to the system energy, it will be a circular normal variable with mean direction 
Cl:j and concentration parameter mj = f3aj. These parameters are directly deter­
mined by the net input to the unit. 

Figure 1 shows a circular normal density function for Zj, the state of unit j. This 
figure also shows the expected value of its stochastic state, which we define as: 

Yj = < Zj > = rjei'yi (4) 

where Ij, the phase of Yj, is the mean direction and rj, the magnitude of Yj, is the 

resultant length. For a circular normal random variable, Ij = Tj, and rj = ~~~:!j.2 
When samples of Zj are concentrated on a small arc about the mean (see Figure 1), 
rj will approach length one. This corresponds to a large concentration parameter 
(mj = f3aj). Conversely, for small mj, the distribution approaches the uniform 
distribution on the circle, and the resultant length falls toward zero. For a uniform 
distribution, rj = O. Note that the concentration parameter for a unit's circular 

IThe normalization factor Io(m) is the modified Bessel function of the first kind and 
order zero. An integral representation of this function is Io(m) = ~ J: e±mcos()d6. It can 
be computed by numerical routines. 

2 An integral representation of the modified Bessel function of the first kind and order 
k is h(m) = ~ Jo7r emcos() cos(k6)d6. Note that II(m) = dlo(m)/dm. 
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normal density function is proportional to /3, the reciprocal of the system tempera­
ture. Higher temperatures will thus have the effect of making this distribution more 
uniform, just as they do in a binary-unit Boltzmann machine. 

2 EMERGENT PROPERTIES OF A DUBM 

A network of directional units as defined above contains two important emergent 
properties. The first property is that the magnitude of the net input to unit j 
describes the extent to which its various inputs "agree". Intuitively, one can think 
of each component Zk wj k of the sum that comprises x j as predicting a phase for 
unit j. When the phases of these components are equal, the magnitude of Xj, aj, is 
maximized. If these phase predictions are far apart, then they will act to cancel each 
other out, and produce a small aj. Given Xj, we can compute the expected value 
of the output of unit j. The expected direction of the unit roughly represents the 
weighted average of the phase predictions, while the resultant length is a monotonic 
function of aj and hence describes the agreement between the various predictions. 

The key idea here is that the resultant length directly describes the degree of cer­
tainty in the expected direction of unit j. Thus, a DUBM naturally incorporates a 
representation of the system's confidence in a value. This ability to combine several 
sources of evidence, and not only represent a value but also describe the certainty 
of that value is an important property that may be useful in a variety of domains. 

The second emergent property is that the DUBM energy is globally rotation­
invariant-E is unaffected when the same rotation is applied to all units' states 
in the network. For each DUBM configuration, there is an equivalence class of con­
figurations which have the same energy. In a similar way, we find that the magnitude 
of Xj is rotation-invariant. That is, when we translate the phases of all units but 
one by some phase, the magnitude of that unit is unaffected. This property under­
lies one of the key advantages of the representation: both the magnitude of a unit's 
state as well as system energy depend on the relative rather than absolute phases 
of the units. 

3 DETERMINISTIC DUBM 

Just as in deterministic binary-unit Boltzmann machines (Peterson and Anderson, 
1987; Hinton, 1989), we can greatly reduce the computational time required to 
run a large stochastic system if we invoke the mean-field approximation, which 
states that once the system has reached equilibrium, the stochastic variables can be 
approximated by their mean values. In this approximation, the variables are treated 
as independent, and the system probability distribution is simply the product of 
the probability distributions for the individual units. 

Gislen, Peterson, and Soderberg (1992) originally proposed a mean-field theory for 
networks of directional (or "rotor") units, but only considered the case of real­
valued weights. They derived the mean-field consistency equations by using the 
saddle-point method. Our approach provides an alternative, perhaps more intuitive 
derivation, due to the use of the circular normal distribution. 
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We can directly describe these mean values based on the circular normal interpre­
tation. We still denote the net input to a unit j as Xj: 

~ * iao 
x j = ~ Yk W j k = aj e 1 (5) 

k 

Once equilibrium has been reached, the state of unit j is Yj, the expected value of 
Zj given the mean-field approximation: 

(6) 

In the stochastic as well as the deterministic system, units evolve to minimize the 
free energy, F = < E > - T H. The calculation of H, the entropy of the system, 
follows directly from the circular normal distribution and the mean-field approxima­
tion. We can derive mean-field consistency equations for Xj and Yj by minimizing 
the mean-field free energy, FM F, with respect to each variable independently. The 
resulting equations match the mean-field equations (Equations 5 and 6) derived 
directly from the circular normal probability density function. They also match the 
special case derived by Gislen et al. for real-valued weights. 

We have implemented a DUBM using the mean-field approximation. We solve for a 
consistent set of x and y values by performing synchronous updates of the discrete­
time approximation of the set of differential equations based on the net input to 
each unit j. We update the x j variables using the following differential equation: 

dXj ~ * --;It = -Xj + ~ YkWjk (7) 
k 

which has Equation 5 as its steady-state solution. In the simulations, we use simu­
lated annealing to help find good minima of FM F. 

Just as for the Hopfield binary-state network, it can be shown that the free energy 
always decreases during the dynamical evolution described in Equation 7 (Zemel, 
Williams and Mozer, 1992). The equilibrium solutions are free energy minima. 

4 DUBM LEARNING 

The units in a DUBM can be arranged in a variety of architectures. The appropriate 
method for determining weight values for the network depends on the particular 
class of network architecture. In an autoassociative network containing a single set 
of interconnected units, the weights can be set directly from the training patterns. 
If hidden units are required to perform a task, then an algorithm for learning the 
weights is required. We use an algorithm that generalizes the Boltzmann machine 
training algorithm (Ackley, Hinton and Sejnowski, 1985; Peterson and Anderson, 
1987) to these networks. 

As in the standard Boltzmann machine learning algorithm, the partial derivative of 
the objective function with respect to a weight depends on the difference between 
the partials of two mean-field free energies: one when both input and output units 
are clamped, and the other when only the input units are clamped. On a given 



Directional-Unit Boltzmann Machines 177 

training case, for each of these stages we let the network settle to equilibrium and 
then calculate the following derivatives: 

OFMF/objk 

OFM F / O(}j k 

-rjTk COS(-yj - 'Yk + (}jk) 

rjrkbjk sin('Yj - 'Yk + (}jk) 

The learning algorithm uses these gradients to find weight values that will minimize 
the objective over a training set. 

5 EXPERIMENTAL RESULTS 

We present below some illustrative examples to show that an adaptive network of 
directional units can be used in a range of paradigms, including associative memory, 
input/output mappings, and pattern completion. 

5.1 SIMPLE AUTOASSOCIATIVE DUBM 

The first set of experiments considers a simple autoassociative DUBM, which contains 
no hidden units, and the units are fully connected. As in a standard Hopfield 
network, the weights are set directly from the training patterns; they equal the 
superposition of the outer product of the patterns. 

We have run several experiments with simple autoassociative DUBMs. The empirical 
results parallel those for binary-unit autoassociative networks. We find, for example, 
that a network containing 30 fully interconnected units is capable of reliably settling 
from a corrupted version of one of 4 stored patterns to a state near the pattern. 
These patterns thus form stable attractors, as the network can perform pattern 
completion and clean-up from noisy inputs. The rotation-invariance property of the 
energy function allows any rotated version of a training pattern to also act as an 
attractor. The network's performance rapidly degrades for more than 4 orthogonal 
patterns; the patterns themselves no longer act as fixed-points, and many random 
initial states end in states far from any stored pattern. In addition, more orthogonal 
patterns can be stored than random patterns. See Noest (1988) for an analysis of 
the capacity of an autoassociative DUBM with sparse and asymmetric connections. 

5.2 LEARNING INPUT/OUTPUT MAPPINGS 

We have also used the mean-field DUBM learning algorithm to learn the weights in 
networks containing hidden units. We have experimented with a task that is well­
suited to a directional representation. There is a single-jointed robot arm, anchored 
at a point, as shown in Figure 2. The input consists of two angles: the angle 
between the first arm segment and the positive x-axis (A), and the angle between 
the two arm segments (p). The two segments each have a fixed length, A and B; 
these are not explicitly given to the network. The output is the angle between the 
line connecting the two ends of the arm and the x-axis (J.t). This target angle is 
related in a complex, non-linear way to the input angles-the network must learn 
to approximate the following trigonometric relationship: 

( A sin A - B sin( A + p) ) 
J.1. = arctan 

A cos A - B cos( A + p) 
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Figure 2: A sample training case for the robot arm problem. The arm consists of 
two fixed-length segments, A and B, and is anchored on the x-axis. The two angles, 
,\ and p, are given as input for each case, and the target output is the angle p,. 

With 500 training cases, a DUBM with 2 input units and 8 hidden units is able to 
learn the task so that it can accurately estimate p, for novel patterns. The learning 
requires 200 iterations of a conjugate gradient training algorithm. On each of 100 
testing patterns, the resultant length of the output unit exceeds .85, and the mean 
error on the angle is less than .05 radians. The network can also learn the task 
with as few as 5 hidden units, with a concomitant decrease in learning speed. The 
compact nature of this network shows that the directional units form a natural, 
efficient representation for this problem. 

5.3 COMPLEX PATTERN COMPLETION 

Our earlier work described a large-scale DUBM that attacks a difficult problem in 
computer vision: image segmentation. In MAGIC (Mozer et al., 1992), directional 
values are used to represent alternative labels that can be assigned to image features. 
The goal of MAGIC is to learn to assign appropriate object labels to a set of image 
features (e.g., edge segments) based on a set of examples. The idea is that the 
features of a given object should have consistent phases, with each object taking on 
its own phase. The units in the network are arranged into two layers-feature and 
hidden-and the computation proceeds by randomly initializing the phases of the 
units in the feature layer, and settling on a labeling through a relaxation procedure. 
The units in the hidden layer learn to detect spatially local configurations of the 
image features that are labeled in a consistent manner across the training examples. 

MAGIC successfully learns to segment novel scenes consisting of overlapping geomet­
ric objects. The emergent DUBM properties described above are essential to MAGIC'S 

ability to perform this task. The complex weights are necessary in MAGIC, as the 
weights encode statistical regularities in the relationships between image features, 
e.g., that two features typically belong to the same object (i.e., have similar phase 
values) or to different objects (i.e., are out of phase). The fact that a unit's re­
sultant length reflects the certainty in a phase label allows the system to decide 
which phase labels to use when updating labels of neighboring features: the ini­
tially random phases are ignored, while confident labels are propagated. Finally, 
the rotation-invariance property allows the system to assign labels to features in a 
manner consistent with the relationships described in the weights, where it is the 
relative rather than absolute phases of the units that are important. 
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6 CURRENT DIRECTIONS 

We are currently extending this work in a number of directions. We are extending 
the definition of a DUBM to combine binary and directional units (Radford Neal, 
personal communication). This expanded representation may be useful in domains 
with directional data that is not present everywhere. For example, it can be directly 
applied to the object labeling problem explored in MAGIC. The binary aspect of 
the unit can describe whether a particular image feature is present or absent. This 
may enable the system to handle various complications, particularly labeling across 
gaps along the contour of an object. Finally, we are applying a DUBM network to 
the interesting and challenging problem of time-series prediction of wind directions. 

Acknowledgements 

The authors thank Geoffrey Hinton for his generous support and guidance. We 
thank Radford Neal, Peter Dayan, Conrad Galland, Sue Becker, Steve Nowlan, and 
other members of the Connectionist Research Group at the University of Toronto 
for helpful comments regarding this work. This research was supported by a grant 
from the Information Technology Research Centre of Ontario to Geoffrey Hinton, 
and NSF Presidential Young Investigator award IRI-9058450 and grant 90-21 from 
the James S. McDonnell Foundation to MM. 

References 

Ackley, D. H., Hinton, G. E., and Sejnowski, T. J. (1985). A learning algorithm for 
Boltzmann machines. Cognitive Science, 9:147-169. 

Baldi, P. and Meir, R. (1990). Computing with arrays of coupled oscillators: 
An application to preattentive texture discrimination. Neural Computation, 
2( 4):458-471. 

Fradkin, E., Huberman, B. A.,· and Shenker, S. H. (1978). Gauge symmetries in 
random magnetic systems. Physical Review B, 18(9):4789-4814. 

GisIen, 1., Peterson, C., and Soderberg, B. (1992). Rotor neurons: Basic formalism 
and dynamics. Neural Computation, 4(5):737-745. 

Hinton, G. E. (1989). Deterministic Boltzmann learning performs steepest descent 
in weight-space. Neural Computation, 1(2):143-150. 

Mardia, K. V. (1972). Statistics of Directional Data. Academic Press, London. 

Mozer, M. C., Zemel, R. S., Behrmann, M., and Williams, C. K. I. (1992). Learn­
ing to segment images using dynamic feature binding. Neural Computation, 
4(5):650-665. 

Noest, A. J. (1988). Phasor neural networks. In Neural Information Processing 
Systems, pages 584-591, New York. AlP. 

Peterson, C. and Anderson, J. R. (1987). A mean field theory learning algorithm 
for neural networks. Complex Systems, 1:995-1019. 

Zemel, R. S., Williams, C. K. I., and Mozer, M. C. (1992). Adaptive networks of 
directional units. Technical Report CRG-TR-92-2, University of Toronto. 


