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Abstract 

Memory-based classification algorithms such as radial basis func­
tions or K-nearest neighbors typically rely on simple distances (Eu­
clidean, dot product ... ), which are not particularly meaningful on 
pattern vectors. More complex, better suited distance measures are 
often expensive and rather ad-hoc (elastic matching, deformable 
templates). We propose a new distance measure which (a) can be 
made locally invariant to any set of transformations of the input 
and (b) can be computed efficiently. We tested the method on 
large handwritten character databases provided by the Post Office 
and the NIST. Using invariances with respect to translation, rota­
tion, scaling, shearing and line thickness, the method consistently 
outperformed all other systems tested on the same databases. 

1 INTRODUCTION 

Distance-based classification algorithms such as radial basis functions or K-nearest 
neighbors often rely on simple distances (such as Euclidean distance, Hamming 
distance, etc.). As a result, they suffer from a very high sensitivity to simple 
transformations of the input patterns that should leave the classification unchanged 
(e.g. translation or scaling for 2D images). This is illustrated in Fig. 1 where an 
unlabeled image of a "9" must be classified by finding the closest prototype image 
out of two images representing respectively a "9" and a "4". According to the 
Euclidean distance (sum of the squares of the pixel to pixel differences), the "4" 
is closer even though the "9" is much more similar once it has been rotated and 
thickened. The result is an incorrect classification. The key idea is to construct a 
distance measure which is invariant with respect to some chosen transformations 
such as translation, rotation and others. The special case of linear transformations 
has been well studied in statistics and is sometimes referred to as Procrustes analysis 
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Figure 1: What is a good similarity measure? According to the Euclidean distance 
the pattern to be classified is more similar to prototype B. A better distance measure 
would find that prototype A is closer because it differs mainly by a rotation and a 
thickness transformation, two transformations which should leave the classification 
invariant. 

(Sibson, 1978). It has been applied to on-line character recognition (Sinden and 
Wilfong, 1992). 

This paper considers the more general case of non-linear transformations such as 
geometric transformations of gray-level images. Remember that even a simple 
image translation corresponds to a highly non-linear transformation in the high­
dimensional pixel space l . In previous work (Simard et al., 1992b), we showed how 
a neural network could be trained to be invariant with respect to selected transfor­
mations of the input. VVe now apply similar ideas to distance-based classifiers. 

''''hen a pattern P is transformed (e.g. rotated) with a transformation s that depends 
on one parameter a (e.g. the angle of the rotation), the set of all the transformed 
patterns Sp = {x I 35 such that x = s(5, P)} is a one-dimensional curve in the 
vector space of the inputs (see Fig. 2). In certain cases, such as rotations of 
digitized images, this curve must be made continuous using smoothing techniques 
(see (Simard et al., 1992b)). When the set of transformations is parameterized by 
n parameters ai (rotation, translation, scaling, etc.), Sp is a manifold of at most n 
dimensions. The patterns in Sp that are obtained through small transformations 
of P, i.e. the part of Sp that is close to P, can be approximated by a plane 
tangent to the manifold Sp at the point P. Small transformations of P can be 
obtained by adding to P a linear combination of vectors that span the tangent 
plane (tangent vectors). The images at the bottom of Fig. 2 were obtained by that 
procedure. Tangent vectors for a transformation s can easily be computed by finite 
difference (evaluating os(a, P)/oa); more details can be found in (Simard et al., 
1992b; Simard et al., 1992a). 

As we mentioned earlier, the Euclidean distance between two patterns P and E 
is in general not appropriate because it is sensitive to irrelevant transformations 
of P and of E. In contrast, the distance V(E, P) defined to be the minimal dis­
tance between the two manifolds Sp and SE is truly invariant with respect to the 
transformation used to generate Sp and SE. Unfortunately, these manifolds have 
no analytic expression in general, and finding the distance between them is a hard 
optimization problem with multiple local minima. Besides, t.rue invariance is not 

1 If the ima.ge of a "3" is translated vertica.lly upward, the middle top pixel will oscillate 
from black to white three times. 
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Figure 2: Top: Small rotations of an original digitized image of the digit "3". 
Middle: Representation of the effect of the rotation in pixel space (if there were 
only 3 pixels). Bottom: Images obtained by moving along the tangent to the 
transformation curve for the same original digitized image P by adding various 
amounts (a) of the tangent vector (T.V.). 

necessarily desirable since a rotation of a "6" into a "9" does not preserve the correct 
classification. 

Our approach consists of approximating the non-linear manifold Sp and SE by 
linear surfaces and computing the distance D( E, P) defined to be the minimum 
distance between them. This solves three problems at once: 1) linear manifolds 
have simple analytical expressions which can be easily computed and stored, 2) 
finding the minimum distance between linear manifolds is a simple least squares 
problem which can be solved efficiently and, 3) this distance is locally invaria.nt but 
not globally invariant. Thus the distance between a "6" and a slightly rota.ted "6" 
is small but the distance between a "6" and a "9" is la.rge. The different. distan ces 
between P and E are represented schematically in Fig. 3. 

The figure represents two patterns P and E in 3-dimensional space. The ma.nifolds 
generated by s are represented by one-dimensional curves going through E and P 
respectively. The linear approximations to the manifolds are represented by lines 
tangent to the curves at E and P. These lines do not intersect in 3 dimensions and 
the shortest distance between them (uniquely defined) is D(E, P). The distance 
between the two non-linear transformation curves VeE, P) is also shown on the 
figure. 

An efficient implementation of the tangent distance D(E, P) will be given in the 
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Figure 3: Illustration of the Euclidean distance and the tangent distance between 
P and E 

next section. Although the tangent distance can be applied to any kind of pat­
terns represented as vectors, we have concentrated our efforts on applications to 
image recognition. Comparison of tangent distance with the best known competing 
method will be described. Finally we will discuss possible variations on the tangent 
distance and how it can be generalized to problems other than pattern recognition. 

2 IMPLEMENTATION 

In this section we describe formally the computation of the tangent distance. Let 
the function s which map u, a to s(a, u) be a differentiable transformation of the 
input space, depending on a vector a of parameter, verifying s(O, u) = 'It. 

If u is a 2 dimensional image for instance, s(a, u) could be a rotation of u by 
the angle &. If we are interested in all transformations of images which conserve 
distances (isometry), 8(a, u) would be a rotation by a r followed by a translation 
by ax, a y of the image u. In this case & = (ar , ax, a y) is a vector of parameters of 
dimension 3. In general, & = (ao, .. " am-d is of dimension m. 

Since 8 is differentiable, the set Stl. = {x I 3a for which x = 8( a, 'It)} is a differen­
tiable manifold which can be approximated to the first order by a hyperplane Ttl.. 
This hyperplane is tangent to Stl. at u and is generated by the columns of matrix 

Ltl. = 08(&~ 'It) I = [08(&, u), ... , 08(a, U)] (1) 
aa d=cf oao aam-l d=O 

which are vectors tangent to the manifold. If E and P are two patterns to be 
compared, the respective tangent planes TE and Tp can be used to define a new 
distance D between these two patterns. The tangent distance D(E, P) between E 
and P is defined by 

D(E, P) = min IIx - yW (2) 
xETE,yETp 

The equation of the tangent planes TE and Tp is given by: 

(3) 

(4) 
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where LE and Lp are the matrices containing the tangent vectors (see Eq. 1) and 
the vectors a E and ap are the coordinates of E' and P' in the corresponding tangent 
planes. The quantities LE and Lp are attributes of the patterns so in many cases 
they can be precomputed and stored. 

Computing the tangent distance 

(5) 

amounts to solving a linear least squares problem. The optimality condition is that 
the partial derivatives of D(E, P) with respect to a p and aE should be zero: 

oD(~, P) = 2(E'(aE) _ p'(ap» T LE = 0 
oaE 

oD(~,P) = 2(p'(ap) _ E'(aE»T Lp = 0 
oap 

(6) 

(7) 

Substituting E' and P' by their expressions yields to the following linear system of 
equations, which we must solve for ap and ilE: 

L;(E - P - Lpilp + LEaE) = 0 

Lf(E - P - Lpap + LEilE) = 0 

The solution of this system is 

(LPEL"E1L~ - L;)(E - P) = (LPEL"E1LEP - Lpp )ap 

(LEPLp~L; - L~)(E - P) = (LEE - LEPLp~LpE)aE 

(8) 

(9) 

(10) 

(11) 

where LEE = LfT LE , LpE = L~LE' LEP = L~Lp and Lpp = L~Lp. LU 
decompositions 0 LEE and Lpp can be precomputed. The most expenSIve part in 
solving this system is evaluating LEP (LPE can be obtained by transposing LEP). 
It requires mE x mp dot products, where mE is the number of tangent vectors for E 
and mp is the number of tangent vectors for P. Once LEP has been computed, ilp 
and ilE can be computed by solving two (small) linear system of respectively mE and 
mp equations. The tangent distance is obtained by computing IIE'(aE) - p'(ap )11 
using the value of a p and ilE in equations 3 and 4. If n is the length of vector E (or 
P), the algorithm described above requires roughly n(mE+l)(mp+l)+3(m~+m~) 
multiply-adds. Approximations to the tangent distance can be computed more 
efficiently. 

3 RESULTS 

Before giving the results of handwritten digit recognition experiments, we would 
like to demonstrate the property of "local invariance" of tangent distance. A 16 by 
16 pixel image similar to the "3" in Fig 2 was translated by various amounts. The 
tangent distance (using the tangent vector corresponding to horizonta.l translations) 
and the Euclidean Distance between the original image and its translated version 
were measured as a function of the size k (in pixels) of the translation. The result 
is plotted in Fig. 4. It is clear that the Euclidean Distance starts increasing linearly 
with k while the tangent distance remains very small for translations as large as 
two pixels. This indicates that, while Euclidean Distance is not invariant to trans­
lation, tangent distance is locally invariant. The extent of the invariance can be 
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Figure 4: Euclidean and tangent distances between a 16x16 handwritten digit image 
and its translated version as a function of the amount of translation measured in 
pixels. 

increased by smoothing the original image, but significant features may be blurred 
away, leading to confusion errors. The figure is not symmetric for large translations 
because the translated image is truncated to the 16 by 16 pixel field of the original 
image. In the following experiments, smoothing was done by convolution with a 
Gaussian of standard deviation u = 0.75. This value, which was estimated visually, 
turned out to be nearly optimal (but not critical). 

3.1 Handwritten Digit Recognition 

Experiments were conducted to evaluate the performance of tangent distance for 
handwritten digit recognition. An interesting characteristic of digit images is that 
we can readily identify a set of local transformations which do not affect the identity 
of the character, while covering a large portion of the set of possible instances of the 
character. Seven such image transformations were identified: X and Y translations, 
rotation, scaling, two hyperbolic transformations (which can generate shearing and 
squeezing), and line thickening or thinning. The first six transformations were 
chosen to span the set of all possible linear coordinate transforms in the imn~e 
plane (nevertheless, they correspond to highly non-linear transforms in pixel space). 
Additional transformations have been tried with less success. 

The simplest possible use of tangent distance is in a Nearest Neighbor classifier. A 
set of prototypes is selected from a training set, and stored in memory. W·hen a 
test pattern is to be classified, the J( nearest prototypes (in terms of tangent dis­
tance) are found, and the pattern is given the class that has the majority among the 
neighbors. In our applications, the size of the prototype set is in the neighborhood 
of 10,000. In principle, classifying a pattern would require computing 10,000 tan­
gent distances, leading to excessive classification times, despite the efficiency of the 
tangent distance computation. Fortunately, two patterns that are very far apart in 
terms of Euclidean Distance are likely to be far apart in terms of tangent distance. 
Therefore we can use Euclidean distance as a "prefilter" , and eliminate prototypes 
that are unlikely to be among the nearest neighbors. V'le used the following 4-step 
classification procedure: 1) the Euclidean distance is computed between the test 
pattern and all the prototypes, 2) The closest 100 prototypes are selected, 3) the 
tangent distance between these 100 prototypes and the test pattern is computed 



56 Simard, Cun, and Denker 

6 USPS 
error (%) 

5 

4 

3 

2 

1 

0 
Human T-Dlst NNet K-NN 

5 

4 

3 

2 

1 

o 

NIST 

Human T -Dlst NNet 

Figure 5: Comparison of the error rate of tangent nearest neighbors and other 
methods on two handwritten digit databases 

and 4) the most represented label among the J( closest prototype is outputed. This 
procedure is two orders of magnitude faster than computing all 10,000 tangent 
distances, and yields the same performance. 

US Postal Service database: In the first experiment, the database consisted of 
16 by 16 pixel size-normalized images of handwritten digits, coming from US mail 
envelopes. The entire training set of 9709 examples of was used as the prototype 
set. The test set contained 2007 patterns. The best performance was obtained with 
the "one nearest neig~bor" rule. The results are plotted in Fig. 5. The error rate 
of the method is 2.6%. Two members of our group labeled the test set by hand 
with an error rate of 2.5% (using one of their labelings as the truth to test the other 
also yielded 2.5% error rate). This is a good indicator of the level of difficulty of 
this task2 . The performance of our best neural network (Le Cun et al., 1990) was 
3.3%. The performance of one nearest neighbor with the Euclidean distance was 
5.9%. These results show that tangent distance performs substantially better than 
both standard K-nearest neighbor and neural networks. 

NIST database: The second experiment was a competition organized by the N 8,­

tional Institute of Standards and Technology. The object of the competition was 
to classify a test set of 59,000 handwritten digits, given a training set of 223,000 
patterns. A total of 45 algorithms were submitted from 26 companies from 7 differ­
ent countries. Since the training set was so big, a very simple procedure was used 
to select about 12,000 patterns as prototypes. The procedure consists of creating 
a new database (empty at the beginning), and classifying each pattern of the large 
database using the new database as a prototype set. Each time an error is made, 
the pattern is added to the new database. More than one pass may have to be made 
before the new database is stable. Since this filtering process would take too long 
with 223,000 prototypes, we split the large database into 22 smaller databases of 
10,000 patterns each, filtered those (to about 550 patterns) and concatenated the 
result, yielding a database of roughly 12,000 patterns. This procedure has many 
drawbacks, and in particular, it is very good at picking up mislabeled characters 
in the training set. To counteract this unfortunate effect, a 3 nearest neighbors 
procedure was used with tangent distance. The organizers decided to collect the 

2This is an extremely difficult test set. Procedures that achieve less than 0.5% error on 
other handwritten digit tasks barely achieve less than 4% on this one 
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training set and the test set among two very different populations (census bureau 
workers for the training set, high-school students for the test set), we therefore re­
port results on the official NIST test set (named "hard test set"), and on a subset 
of the official training set, which we kept aside for test purposes (the "easy test 
set"). The results are shown in Fig. 5. The performance is much worse on the 
hard test set since the distribution was very different from that of the training set. 
Out of the 25 participants who used the NIST training database, tangent distance 
finished first. The overall winner did not use the training set provided by NIST (he 
used a much larger proprietary training set), and therefore was not affected by the 
different distributions in the training set and test set. 

4 DISCUSSION 

The tangent distance algorithm described in the implementation section can be 
improved/adjusted in at least four different ways: 1) approximating the tangent 
distance for better speed 2) modifying the tangent distance itself, 3) changing the 
set of transformations/tangent vectors and 4) using the tangent distance with clas­
sification algorithms other than K-nearest neighbors, perhaps in combination, to 
minimize the number of prototypes. We will discuss each of these aspects in turn. 

Approximation: The distance between two hyperplanes TE and Tp going through 
P and E can be approximated by computing the projection PEep) of Ponto TE 
and Pp(E) of E onto Tp. The distance IIPE(P) - Pp(E)1I can be computed in 
O(n(mE + mp» multiply-adds and is a fairly good approximation of D(E, P). 
This approximation can be improved at very low cost by computing the closest 
points between the lines defined by (E, PEep»~ and (P, Pp(E». This approximation 
was used with no loss of performance to reduce the number of computed tangent 
distance from 100 to 20 (this involves an additional "prefilter"). In the case of 
images, another time-saving idea is to compute tangent distance on progressively 
smaller sets of progressively higher resolution images. 

Changing the distance: One may worry that the tangent planes of E and P 
may be parallel and be very close at a very distant region (a bad side effect of the 
linear a.pproximation). This effect can be limited by imposing a constraint of the 
form IlaEIi < f{E and lIapli < f{p. This constraint was implemented but did not 
yield better results. The reason is that tangent planes are mostly orthogonal in 
high dimensional space and the norms of [[aEIi and !lapll are already small. 

The tangent distance can be normalized by dividing it by the norm of the vectors. 
This improves the results slightly because it offsets side effects introduced in some 
transformations such as scaling. Indeed, if scaling is a transformation of interest, 
there is a potential danger of finding the minimum distance between two images 
after they have been scaled down to a single point. The linear approximation of 
the scaling transformation does not reach this extreme, but still yields a slight 
degradation of the performance. The error rate reported on the USPS database can 
be improved to 2.4% using this normalization (which was not tried on NIST). 

Tangent distance can be viewed as one iteration of a Newton-type algorithm which 
finds the points of minimum distance on the true transformation manifolds. The 
vectors aE and ap are the coordinates of the two closest points in the respective 
tangent spaces, but they can also be interpreted for real (non-linear) transforma­
tions. If ae; is the amount of the translation tangent vector that must be added 
to E to make it as close as possible to P, we can compute the true translation of 
image E by ae,; pixels. In other words, E'(aE) and pl(ap) are projected onto 
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close points of SE and Sp. This involves a resampling but can be done efficiently. 
Once this new image has been computed, the corresponding tangent vectors can 
be computed for this new image and the process can be repeated. Eventually this 
will converge to a local minimum in the distance between the two transformation 
manifold of P and E. The tangent distance needs to be normalized for this iteration 
process to work. 

A priori knowledge: The a priori knowledge used for tangent vectors depends 
greatly on the application. For character recognition, thickness was one of the 
most important transformations, reducing the error rate from 3.3% to 2.6%. Such 
a transformation would be meaningless in, say, speech or face recognition. Other 
transformations such as local rubber sheet deformations may be interesting for 
character recognition. Transformations can be known a priori or learned from the 
data. 

Other algorithms, reducing the number of prototypes: Tangent distance is 
a general method that can be applied to problems other than image recognition, 
with classification methods other than K-nearest neighbors. Many distance-ba.sed 
classification schemes could be used in conjunction with tangent distance, among 
them LVQ (Kohonen, 1984), and radial basis functions. Since all the operators in­
volved in the tangent distance are differentiable, it is possible to compute the partial 
derivative of the tangent distance (between an object and a prototype) with respect 
to the tangent vectors, or with respect to the prototype. Therefore the tangent 
distance operators can be inserted in gradient-descent based adaptive machines (of 
which LVQ and REF are particular cases). The main advantage of learning the 
prototypes or the tangent vectors is that fewer prototypes may be needed to reach 
the same (or superior) level of performance as, say, regular K-nearest neighbors. 

In conclusion, tangent distance can greatly improve many of the distance-based 
algorithms. We have used tangent distance in the simple K-nearest neighbor al­
gorithm and outperformed all existing techniques on standard classification tasks. 
This surprising success is probably due the fact that a priori knowledge can be very 
effectively expressed in the form of tangent vectors. Fortuna.tely, many algorithms 
are based on computing distances and can be adapted to express a priori knowledge 
in a similar fashion. Promising candidates include Parzen windows, learning vector 
quantization and radial basis functions. 
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