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Abstract 

The ensemble dynamics of stochastic learning algorithms can be 
studied using theoretical techniques from statistical physics. We 
develop the equations of motion for the weight space probability 
densities for stochastic learning algorithms. We discuss equilibria 
in the diffusion approximation and provide expressions for special 
cases of the LMS algorithm. The equilibrium densities are not in 
general thermal (Gibbs) distributions in the objective function be­
ing minimized, but rather depend upon an effective potential that 
includes diffusion effects. Finally we present an exact analytical 
expression for the time evolution of the density for a learning algo­
rithm with weight updates proportional to the sign of the gradient. 

1 Introduction: Theoretical Framework 

Stochastic learning algorithms involve weight updates of the form 

w(n+1) = w(n) + /-l(n)H[w(n),x(n)] (1) 

where w E 7£m is the vector of m weights, /-l is the learning rate, H[.] E 7£m is the 
update function, and x(n) is the exemplar (input or input/target pair) presented 
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to the network at the nth iteration of the learning rule. Often the update function 
is based on the gradient of a cost function H(w,x) = -a£{w,x) law. We assume 
that the exemplars are Li.d. with underlying probability density p{x). 

We are interested in studying the time evolution and steady state behavior of 
the weight space probability density P(w, n) for ensembles of networks trained by 
stochastic learning. Stochastic process theory and classical statistical mechanics 
provide tools for doing this. As we shall see, the ensemble behavior of stochas­
tic learning algorithms is similar to that of diffusion processes in physical systems, 
although significant differences do exist. 

1.1 Dynamics of the Weight Space Probability Density 

Equation (1) defines a Markov process on the weight space. Given the particular 
input x, the single time-step transition probability density for this process is a Dirac 
delta function whose arguments satisfy the weight update (1): 

W ( w' ~ w I x) = 8 ( w - w' - J-t H[ w' , x]) . (2) 

From this conditional transition probability, we calculate the total single time-step 
transition probability (Leen and Orr 1992, Ritter and Schulten 1988) 

W(w' ~ w) = ( 8( w - w' - J-tH[w',x]) }z (3) 

where ( ... }z denotes integration over the measure on the random variable x. 

The time evolution of the density is given by the Kolmogorov equation 

P(w, n + 1) = J dw' P(w' , n) W(w' ~ w) , (4) 

which forms the basis for our dynamical description of the weight space probability 
density 1. 

Stationary, or equilibrium, probability distributions are eigenfunctions of the tran­
sition probability 

Ps(w) = J dw' Ps(w') W(w' ~ w). (5) 

It is particularly interesting to note that for problems in which there exists an 
optimal weight w,. such that 

H(w,.,x) = 0, "Ix, 

one stationary solution is a delta function at w = w,.. An important class of such 
examples are noise-free mapping problems for which weight values exist that realize 
the desired mapping over all possible input/target pairs. For such problems, the 
ensemble can settle into a sharp distribution at the optimal weights (for examples 
see Leen and Orr 1992, Orr and Leen 1993). 

Although the Kolmogorov equation can be integrated numerically, we would like 
to make further analytic progress. Towards this end we convert the Kolmogorov 

1 An alternative is to base the time evolution on a suitable master equation. Both 
approaches give the same results. 
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equ~,tion into a differential· difference equation by expanding (3) as a power series 
in J.l. Since the transition probability is defined in the sense of generalized functions 
(i.e. distributions), the proper way to proceed is to smear (4) with a smooth test 
function of compact support f(w) to obtain 

J dw f{w) P(w, n + 1) = J dw dw' f(w) P(w', n) W(w' -t w). (6) 

Next we use the transition probability (3) to perform the integration over wand 
expand the resulting expression as a power series in J.l. Finally, we integrate by 
part5 to take derivatives off f, dropping the surface terms. This results in a discrete 
time version of the classic Kramers·Moyal expansion (llisken 1989) 

P(w,n+1) - P(w,n) = 

where Hja denotes the ja th component of the m-component vector H. 

In section 3, we present an algorithm for which the Kramers-Moyal expansion can 
be explicitly summed. In general the full expansion is not analytically tractable, 
and to make further analytic progress we will truncate it at second order to obtain 
the Fokker-Planck equation. 

1.2 The Fokker-Planck (Diffusion) Approximation 

For small enough 1J.l HI, the Kramers-Moyal expansion (7) can be truncated to 
second order to obtain a Fokker-Planck equation:2 

P(w, n + 1) - P(w, n) = 

{) 
-J.l {)Wi [ Ai(W) P(w, n) ] (8) 

In (8), and throughout the remainder of the paper, repeated indices are summed 
over. In the Fokker-Planck approximation, only two coefficients appear: Ai ( w) = 
(Hi)z, called the drift vector, and Bij(W) = (Hi Hj)z' called the diffusion matrix. 
The drift vector is simply the average update applied at w. Since the diffusion 
coefficients can be strongly dependent on the position in weight space, the equilib­
rium densities will, in general, not be thermal (Gibbs) distributions in the potential 
corresponding to (H( w, x) ) z' This is exemplified in our discussion of equilibrium 
densities for the LMS algorithm in section 2.1 below3 • 

2Radons et al. (1990) independently derived a Fokker-Planck equation for backpropaga­
tion. Earlier, Ritter and Schulten (1988) derived a Fokker-Planck equation (for Kohonen's 
self-ordering feature map) that is valid in the neighborhood of a local optimum. 

3See (Leen and Orr 1992, Orr and Leen 1993) for further examples. 
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2 Equilibrium Densities in the Fokker-Planck 
Approximation 

In equilibrium the probability density is stationary, P(w, n+1) = P(w, n) = Ps(w), 
so the Fokker-Planck equation (8) becomes 

0= - a:i Ji(w) == - a:i (11. Ai(W) P8(W) - ~2 a:j [Bij(W) P8(W)] ) (9) 

Here, we have implicitly defined the probability density current J(w). In equilib­
rium, its divergence is zero. 

If the drift and diffusion coefficients satisfy potential conditions, then the equilibrium 
current itself is zero and detailed balance is obtained. The potential conditions are 
(Gardiner, 1990) 

OZk OZ, [J-l 0 1 OWl - OWk = 0, where Zk(W) = Bk/(w) 2" ow; Bi;(W) - Ai(W) (10) 

Under these conditions the solution to (9) for the equilibrium density is: 

Ps(w) = !... e-2:F(w)/~, F(w) = 1 dWk Zk(W) 
J( w 

(11) 

where J( is a normalization constant and F( w) is called the effective potential. 

In general, the potential conditions are not satisfied for stochastic learning algo­
rithms in multiple dimensions.4 In this respect, stochastic learning differs from 
most physical diffusion processes. However for LMS with inputs whose correlation 
matrix is isotropic, the conditions are satisfied and the equilibrium density can be 
reduced to the quadrature in (11). 

2.1 Equilibrium Density for the LMS Algorithm 

The best known on-line learning system is the LMS adaptive filter. For the LMS 
algorithm, the training examples consist of input/target pairs x(n) = {s(n),t(n)}, 
the model output is u(n) = W· s(n), and the cost function is the squared error: 

1 1 
£(w,x(n)) = 2 [t(n)-u(n)]2 = 2 [t(n)-w·s(n)]2 

The resulting update equations (for constant learning rate J-l) are 

w(n+l) = w(n) + J-l[t(n)-w.s(n)]s(n). 

(12) 

(13) 

We assume that the training data are generated according to a "signal plus noise" 
model: 

t(n) = w • . s(n) + €(n) , (14) 
where w. is the "true" weight vector and €( n) is LLd. noise with mean zero and 
variance (12. We denote the correlation matrix of the inputs s( n) by R and the 

4For one-dimensional algorithms, the potential conditions are trivially satisfied. 
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fourth order correlation tensor of the inputs by S. It is convenient to shift the 
origin of coordinates in weight space and define the weight error vector 

v = w - w •. 

In terms of v, the weight update is 

v(n+l) = v(n) - JJ[s(n).v(n)]s(n) + JJf(n)s(n). 

The drift vector and diffusion matrix are given by 

Ai=-(SiSj}s Vj = -RijVj 

and 

(15) 

Bij = (Si Sj Sle SI Vie VI + f2 Sj Sj ) s ( = Sijlel Vie VI + (72 Rij (16) , 
respectively. Notice that the diffusion matrix is quadratic in v. Thus as we move 
away from the global minimum at v = 0, diffusive spreading of the probability 
density is enhanced. Notice also that, in general, both terms of the diffusion matrix 
contribute an anisotropy. 

We further assume that the inputs are drawn from a zero-mean Gaussian process. 
This assumption allows us to appeal to the Gaussian moment factoring theorem 
(Haykin, 1991, p318) to express the fourth-order correlation S in terms of R 

Sijlel = Rij Rlcl + Rile Rjl + Ril Rjle . 

The diffusion matrix reduces to 

(17) 

To compute the effective potential (10 and 11) the diffusion matrix is inverted 
using the Sherman-Morrison formula (Press, 1987, p67). As a final simplification, 
we assume that the input distribution is spherically symmetric. Thus 

R = rI , 

where I denotes the identity matrix. 

Together these assumptions insure detailed balance, and we can integrate (11) in 
closed form. In figure 1, we compare the effective potential F(v) (for 1-D LMS) 
with the potential corresponding to the quadratic cost function. 

v 

Fig.l: Effective potential (dashed curve) and cost function (solid curve) for I-D LMS. 

The spatial dependence of the the diffusion coefficient forces the effective potential 
to soften relative to the cost function for large Ivl. This accentuates the tails of the 
distribution relative to a gaussian. 
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The equilibrium density is 

1 [ 3r ] -( ~+m ) 
Ps{v) = K 1 + u21vl2 , (18) 

where, as before, m and J( denote the dimension of the weight vector and the 
normalization constant for the density respectively. For a l-D filter, the equilibrium 
density can be found in closed form without assuming Gaussian input data. We 
find 

(19) 

With gaussian inputs (for which S = 3r2 ) (19) properly reduces to (18) with m = 1. 

The equilibrium densities (18) and (19) are clearly not gaussian, however in the limit 
of very small J.lr they reduce to gaussian distributions with variance J.lu2 /2. Figure 
2 shows a comparison between the theoretical result and a histogram of 200,000 
values of v generated by simulation with J.l = 0.005, and u 2 = 1.0. The input data 
were drawn from a zero-mean Gaussian distribution with r = 4.0. 

I I i I I 

-0.2 -0.1 0.0 0.1 0.2 
v 

Fig.2: Equilibrium density for 1-D LMS 

3 An Exactly Summable Model 

As in the case of LMS learning above, stochastic gradient descent algorithms update 
weights based on an instantaneous estimate of the gradient of some average cost 
function £(w) = {£(w, x) }z. That is, the update is given by 

o 
Hi(W,X) = --0 £(w,x). 

Wi 

An alternative is to increment or decrement each weight by a fixed amount depend­
ing only on the sign of O£/OWi. We formulated this alternative update rule because 
it avoids a common problem for sigmoidal networks, getting stuck on "flat spots" or 
"plateaus". The standard gradient descent update rule yields very slow movement 
on plateaus, while second order methods such as gauss-newton can be unstable. 
The sign-of-gradient update rule suffers from neither of these problems.s 

5The use of the sign of the gradient has been suggested previously in the stochastic 
approximation literature by Fabian (1960) and in the neural network literature by Derthick 
(1984). 
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If at each iteration one chooses a weight at random for updating, then the Kramers­
Moyal expansion can be exactly summed. Thus at each iteration we 1) choose a 
weight Wi and an exemplar x at random, and 2) update Wi with 

H .( ) _ . (8£(w,x(n))) 
I w,x - -Sign 8 

Wi 
(20) 

With this update rule, Hj = ±1 or 0 and Hi Hj = lSij (or 0). All of the coefficients 
(HiHj Hk ... ) z in the Kramers-Moyal expansion (7) vanish unless i = j = k = .... 
The remaining series can be summed by breaking it into odd and even parts. This 
leav\!s 

P(w,n+l) - P(w,n) = 
m 

1 L { P(w + Ilj,n) Aj(w + Ilj) - P(w -Ilh n) Aj(w -Ilj) } 
2m 

j=1 

m 

+ 
1 L { P(w + Ilj, n) Bjj(w + Ilj) - 2P(w, n) Bjj(w) 

2m 
j=1 

+ P(w -Ilj, n) Bjj(w -Ilj) } (21) 

where /-tj denotes a displacement along Wj a distance /-t, Aj(w) = (Hj(w, x) )z' and 
Bjj(w) = (H;(w,x)z' Note that Bjj(w) = 1 unless H(w,x) = 0, for all x, in 
which case Bjj(w) = O. Although exact, (21) curiously has the form of a second 
order finite difference approximation to the Fokker-Planck equation with diagonal 
diffusion matrix. This form is understandable, since the dynamics (20) restrict the 
weight values W to a hypercubic lattice with cell length /-t and generate only nearest 
neighbor interactions. 

L: 
-0.5 

-0.5 

!J!: k!~ 
0.5 1 1.5 2 2.5 -0.5 0.5 1 1.5 2 2.5 

v v 

n=5oo 

-0.5 

n =5000 

0.5 1 1.5 2 2.5 
v 

Fig.3: Sequence of densities for the XOR problem 

As an example, figure 3 shows the cost function evaluated along a 1-D slice through 
the weight space for the XOR problem. Along this line are local and global minima 
at v = 1 and v = 0 respectively. Also shown is the probability density (vertical 
lines). The sequence shows the spreading of the density from its initialization at 
the local minimum, and its eventual collection at the global minimum. 
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4 Discussion 

A theoretical approach that focuses on the dynamics of the weight space probability 
density, as we do here, provides powerful tools to extend understanding of stochastic 
search. Both transient and equilibrium behavior can be studied using these tools. 
We expect that knowledge of equilibrium weight space distributions can be used in 
conjunction with theories of generalization (e.g. Moody, 1992) to assess the influence 
of stochastic search on prediction error. Characterization of transient phenomena 
should facilitate the design and evaluation of search strategies such as data batching 
and adaptive learning rate schedules. Transient phenomena are treated in greater 
depth in the companion paper in this volume (Orr and Leen, 1993). 
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