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Abstract 

Previously, we have introduced the idea of neural network transfer, 
where learning on a target problem is sped up by using the weights 
obtained from a network trained for a related source task. Here, 
we present a new algorithm. called Discriminability-Based Transfer 
(DBT), which uses an information measure to estimate the utility 
of hyperplanes defined by source weights in the target network, 
and rescales transferred weight magnitudes accordingly. Several 
experiments demonstrate that target networks initialized via DBT 
learn significantly faster than networks initialized randomly. 

1 INTRODUCTION 

Neural networks are usually trained from scratch, relying only on the training data 
for guidance. However, as more and more networks are trained for various tasks, 
it becomes reasonable to seek out methods that. avoid "'reinventing the wheel" , and 
instead are able to build on previously trained networks' results. For example, con­
sider a speech recognition network that was only trained on American English speak­
ers. However, for a new application, speakers might have a British accent. Since 
these tasks are sub-distributions of the same larger distribution (English speakers), 
they may be related in a way that. can be exploited to speed up learning on the 
British network, compared to when weights are randomly initialized. 

We have previously introduced the question of how trained neural networks can be 
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"recycled' in this way [Pratt et al., 1991]; we've called this the transfer problem. 
The idea of transfer has strong roots in psychology (as discussed in [Sharkey and 
Sharkey, 1992]), and is a standard paradigm in neurobiology, where synapses almost 
always come "pre-wired". 

There are many ways to formulate the transfer problem. Retaining performance on 
the source task mayor may not be important. When it is, the problem has been 
called sequential learning, and has been explored by several authors (cf. [McCloskey 
and Cohen, 1989]). Our paradigm assumes that source task performance is not 
important, though when thl~ source task training data is a subset of the target 
training data, our method may be viewed as addressing sequential learning as well. 
Transfer knowledge can also be inserted into several different entry points in a 
back-propagation network (see [Pratt, 1993al). We focus on changing a network's 
initial weights; other studies change other aspects, such as the objective function 
(cf. [Thrun and Mitchell, 1993, Naik et al., 1992]). 

Transfer methods mayor may not use back-propagation for target task training. 
Our formulation does, because this allows it to degrade, in the worst case of no 
source task relevance, to back-propagation training on the tar~et task with randomly 
initialized weights. An alternative approach is described by lAgarwal et al., 1992]. 

Several studies have explored literal transfer in back-propagation networks, where 
the final weights from training on a source task are used as the initial conditions for 
target training (cf. [Martin, 1988]). However, these studies have shown that often 
networks will demonstrate worse performance after literal transfer than if they had 
been randomly initialized. 

This paper describes the Discriminability-Based Transfer (DBT) algorithm, which 
overcomes problems with literal transfer. DBT achieves the same asymptotic ac­
curacy as randomly initialized networks, and requires substantially fewer training 
updates. It is also superior to literal transfer, and to just using the source network 
on the target task. 

2 ANALYSIS OF LITERAL TRANSFER 

As mentioned above, several studies have shown that networks initialized via literal 
transfer give worse asymptotic perlormance than randomly initialized networks. To 
understand why. consider the situation when only a subset. of the source network 
input-to-hidden (IH) layer hyperplanes are relevant to the target problem. as il­
lustrated in Figure 1. We've observed that some hyperplanes initialized by source 
network training don't shift out of their initial positions, despite the fact that they 
don't help to separate the target training data. The weights defining such hyper­
planes often have high magnitudes [Dewan and Sontag, 1990]. Figure 2 (a) shows 
a simulation of such a situation, where a hyperplane that has a high magnitude, as 
if it came from a source network, causes learning to be slowed down. 1 

Analysis of the back-propagation weight update equations reveals that high source 
weight magnitudes retard back-propagation learning on the target task because this 

1 Neural network visualization will be explored more thoroughly in an upcoming pape ... 
An X-based animator is available from the author via anonymous ftp. Type "archie ha". 
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Figure 1: Problem Illustrating the need for DBT. The source and target tasks are 
identical, except that the target task has been shifted along one axis, as represented 
by the training data shown. Because of this shift, two of the source hyperplanes are 
helpful in separating class-O from class-l data in the target task, and two are not. 

equation is not scaled relative to weight magnitudes. Also, the weight update equa­
tion contains the factor y( 1 - y) (where y is a unit's activation). which is small 
for large weights. Considering this analysis, it might at first appear that a simple 
solution to the problem with literal transfer is to uniformly lower all weight magni­
tudes. However, we have also observed that hyperplanes in separating positions will 
move unless they are given high weight magnitudes. To address both of these prob­
lems, we must rescale hyperplanes so that useful ones are defined by high-magnitude 
weights and less useful hyperplanes receive low magnitudes. To implement such a 
method, we need a metric for evaluating hyperplane utility. 

3 EVALUATING CLASSIFIER COMPONENTS 

We borrow the 1M metric for evaluating hyperplanes from decision tree induction 
[Quinlan, 1983]. Given a set of training data and a hyperplane that crosses through 
it, the 1M function returns a value between 0 and 1, indicating the amount that the 
hyperplane helps to separate the data into different classes. 

The formula for 1M, for a decision surface in a multi-class prob­
lem, is: 1M - ~ ( L L xij logxij - L Xi. log Xi. - L X.j logx.j + Nlog N) 
[Mingers, 1989). Here, N is the number of patterns, i is either 0 or 1, depending 
on the side of a hyperplane on which a pattern falls, j indexes over all classes, Xij 

is the count of class j patterns on side i of the hyperplane, ~. i is the count of all 
patterns on side i, and x.j is the total number of patterns in class j. 

4 THE DBT ALGORITHM 

The DBT algorithm is shown in Figure 3. It inputs the target training data and 
weights from the source network, along with two parameters C and S (see below). 
DBT outputs a modified set of weights, for initializing training on the target task. 
Figure 2 (b) shows how the problem of Figure 2 (a) was repaired via DBT. 

DBT modifies the weights defining each source hyperplane to be proportional to the 
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Figure 2: Hyperplane 110vement speed in Literal Transfer. Compared to DBT. 
Each image in this figure shows the hyperplanes implemented by IH weights at a 
different epoch of training. Hidden unit l's hyperplane is a solid line; HU2's is a 
dotted line, and HU3's hyperplane is shown as a dashed line. In (a) note how HUl 
seems fixed in place. Its high magnitude causes learning to be slow (taking about 
3100 epochs to converge). In (b) note how DBT has given HUl a small magnitude, 
allowing it to be flexible, so that the training data is separated by epoch 390. A 
randomly initialized network on this problem takes about 600 epochs. 
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Input: 
Source network weights 
Target training data 
Parameters: C (cutoff (actor), S (scaleup (actor) 

Output: 
Initial weigbts (or target network, assuming same topology as source network 

Method: 
For eacb source network bidden unit i 

Compare tbe byperplane defined by incoming weights to i to tbe target training data, 
calculating [Mt ; (f [0,1]) 

Rescale [Mfa values so that largest has value S. Put. result in s, . 
For [Mt ; 's tbat are less tban C 

I( higbest magnitude ratio between weights defining hyperplane i is > 100.0, 
reset weights for that hyperplane randomly 

Else uniformly scale down byperplane to bave low-valued weigbts (maximum 
magnitude of 0.5), but to be in the same position. 

For eacb remaining IH hidden unit i 
For eacb weight wj; defining hyperplane i in target network 

L t· h • et Wj. = source weJg t Wj; X Si 

Set hidden-to-output target network weights randomly in [-0.5,0.5] 

Figure 3: The Discriminability-Based Transfer (DBT) Algorithm. 

1M value, according to an input parameter, S. DBT is based on the idea that the 
best initial magnitude Aft for a target hyperplane is M t = S X M. x I M t , where S 
("scaleup") is a constant of proportionality, At. is the magnitude of a source network 
hyperplane, and I Mt is the discriminability of the source hyperplane on the target 
training data. We assume that this simple relationship holds over some range of I M t 

values. A second parameter, C, determines a cut-off in this relationship - source 
hyperplanes with I Mt < C receive very low magnitudes, so that the hyperplanes 
are effectively equivalent to those in a randomly initialized network. The use of 
the C parameter was motivated by empirical experiments that indicated that the 
multiplicative scaling via S was not adequate. 

To determine S and C for a particular source and target task, we ran DBT several 
times for a small number of epochs with different Sand C values. We chose the S 
and C values that yielded the best average TSS (total sum of squared errors) after 
a few epochs. We used local hill climbing in average TSS space to decide how to 
move in S, C space. 

DBT randomizes the weights in the network's hidden-to-output (HO) layer. See 
[Sharkey and Sharkey, 1992) for an extension to this work showing that literal 
transfer of HO weights might also be effective. 

5 EMPIRICAL RESULTS 

DBT was evaluated on seven tasks: female-to-male speaker transfer on a lO-vowel 
recognition task (PB), a 3-class subset of the PB task (PB123). transfer from all 
females to a single male in the PB task (Onemale), transfer for a heart disease 
diagnosis problem from Hungarian to Swiss patients (Heart-HS). transfer for the 
same task from patients in California to Swiss patients (Heart-VAS). transfer from 
a subset of DNA pattern recognition exanlples to a superset (DNA). and transfer 
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from a subset of chess endgame problems to a superset (Chess). Note that the 
DNA and chess tasks effectively address the sequential learning problem; as long as 
the source data is a subset of the target data, the target network can build on the 
previous results. 

DBT was compared to randomly initialized networks on the target task. We 
measured generalization performance in both conditions by using 10-way cross­
validation on 10 different initial conditions for each t.arget task, resulting in 100 
different runs for each of the two conditions, and for each of the seven tasks. Our 
empirical methodology controlled carefully for initial conditions, hidden unit count, 
back-propagation paranleter:> '1 (learning rate) and Q" (momentum), and DBT pa­
rameters S and C. 

5.1 SCENARIOS FOR EVALUATION 

There are at least two different practical situations in which we may want to speed 
up learning. First, we may have a limited amount of computer time. all of which 
will be used because we have no way of detecting when a network's performance has 
reached some criterion. In this case. if our speed-up method (i.e. DBT) is signifi­
cantly superior to a baseline for a large proportion of epochs during training. then 
the probability that we'll have to stop during that period of significant superiority 
is high If we do stop at an epoch when our method is significantly better, then this 
justifies it over the baseline, because the resulting network has better petfonnance. 

A second situation is when we have some way of detecting when petformance is 
"good enough" for an application. In contrast to the above situation. here a DBT 
network may be run for a shorter time than a baseline network, because it reaches 
this criterion faster. In this case, the number of epochs of DBT significant superi­
ority is less important than the speed with which it achieves the criterion. 

5.2 RESULTS 

To evaluate networks according to the first scenario, we tested for statistical signif­
icance at the 99.0% level between the 100 DBT and the 100 randomly initialized 
networks at each training epoch. We found (1) that asymptotic DBT petformance 
scores were the same as for random networks and (2), that DBT was superior for 
much of the training period. Figure 4 (a) shows the number of weight updates for 
which a significant difference was found for the seven tasks. 

For the second scenario, we also found (3) that DBT networks required many fewer 
epochs to reach a criterion performance score. For this test, we found the last 
significantly different epoch between the two methods. Then we measured the 
number of epochs required to reach 98%, 95o/c" and 66%, of that level. The number 
of weight updates required for DBT and randomly initialized networks to reach the 
98% criterion are shown in Figure 4 (b). Note that the y axis is logarithmic, so, 
for example. over 30 million weight updates were saved by using DBT instead of 
random initialization in the PB123 problem. Results for the 95% and 66% criteria 
also showed DBT to be at least as fast as random initialization for every task. 

Using the same tests described for DBT above, we also tested literal networks on 
the seven transfer tasks. We found that, unlike DBT, literal networks reached sig-
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Figure 4: Summary of DBT Empirical Results. 

nificantly worse asymptotic performance scores than randomly initialized networks. 
Literal networks also learned slower for some tasks. These results justify the use of 
the more complicated D BT method oyer literal transfer. 

\\Te also evaluated the source networks directly on the target tasks, without any 
back-propagation training on the target training data. Scores were significantly and 
substantially worse than random networks. This result indicates that the transfer 
scenarios we chose for evaluation were nontrivial. 

6 CONCLUSION 

We have described the DBT algorithm for transfer between neural networks. 2 DBT 
demonstrated substantial and significant learning speed improvement over randomly 
initialized networks in 6 out of 7 tasks studied (and the same learning speed in the 
other task). DBT never displayed worse asymptotic performance than a randomly 
initialized network. We have also shown that DBT is superior to literal transfer, 
and to simply using the source network on the target task. 
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