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Abstract 

In [5], a new incremental cascade network architecture has been 
presented. This paper discusses the properties of such cascade 
networks and investigates their generalization abilities under the 
particular constraint of small data sets. The evaluation is done for 
cascade networks consisting of local linear maps using the Mackey­
Glass time series prediction task as a benchmark. Our results in­
dicate that to bring the potential of large networks to bear on the 
problem of extracting information from small data sets without run­
ning the risk of overjitting, deeply cascaded network architectures 
are more favorable than shallow broad architectures that contain 
the same number of nodes. 

1 Introduction 

For many real-world applications, a major constraint for the successful learning 
from examples is the limited number of examples available. Thus, methods are 
required, that can learn from small data sets. This constraint makes the problem 
of generalization particularly hard. If the number of adjustable parameters in a 
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network approaches the number of training examples, the problem of overfitting oc­
curs and generalization becomes very poor. This severely limits the size of networks 
applicable to a learning task with a small data set. To achieve good generalization 
also in these cases, particular attention must be paid to a proper architecture chosen 
for the network. The better the architecture matches the structure of the problem 
at hand, the better is the chance to achieve good results even with small data sets 
and small numbers of units. 

In the present paper, we address this issue for the class of so called Cascade Network 
Architectures [5, 6] on the basis of an empirical approach, where we use the Mackey­
Glass time series prediction as a benchmark problem. In our experiments we want 
to exploit the potential of large networks to bear on the problem of extracting 
information from small data sets without running the risk of overfitting. Our results 
indicate that it is more favorable to use deeply cascaded network architectures than 
shallow broad architectures, provided the same number of nodes is used in both 
cases. The width of each individual layer is essentially determined by the size of 
the training data set. The cascade depth is then matched to the total number of 
nodes available. 

2 Cascade Architecture 

So far, mainly architectures with few layers containing many units have been con­
sidered, while there has been very little research on narrow, but deeply cascaded 
networks. One of the few exceptions is the work of Fahlman [1], who proposed 
networks trained by the cascade-correlation algorithm. In his original approach, 
training is strictly feed-forward and the nonlinearity is achieved by incrementally 
adding percept ron units trained to maximize the covariance with the residual error. 

2.1 Construction Algorithm 

In [5] we presented a new incremental cascade network architecture based 011 error 
minimization instead of covariance maximization. This leads to all architecture 
that differs significantly from Fahlman's proposal and allows an inversion of the 
construction process of the network. Thus, at each stage of the construction of the 
network all cascaded modules provide an approximation of the target function t(e), 
albeit corresponding to different states of convergence (Fig. 1). 

The algorithm starts with the training of a neural module with output yeo) to 
approximate a target function t(e), yielding 

(1) 

the superscript (0) indicating the cascade level. After an arbitrary number of train­
ing epochs, the weight vector w(O) becomes "frozen". Now we add the output y(O) 

of this module as a virtual input unit and train another neural module as new output 
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Figure 1: Cascade Network Architecture 

unit y(1) with 

(2) 

where x(1)(~) = {x(O)(~),y(O)(~)} denotes the extended input. This procedure can 
be iterated arbitrarily and generates a network sttucture as shown in Fig. 1. 

2.2 Cascade Modules 

The details and advantages of this approach are discussed in [5, 6]. In particular, 
this architecture can be applied to any arbitrary nonlinear module. It does not rely 
on the availability of a procedure for error backpropagation. Therefore, it is also 
applicable to (and has been extensively tested with) pure feed-forward approaches 
like simple perceptrons [5] and vector quantization or "Local linear maps" ("LLM 
networks") [6, 7]. 

2.3 Local Linear Maps 

LLM networks have been introduced earlier ((Fig. 2); for details, d. [11, 12]) and 
are related to the GRBF -approach [10] and the self-organizing maps [2, 3, 11]. 
They consist of N units r = 1, ... ,N, with an input weight vector w~in) E }RL, an 
output weight vector w~out) E }RM and a MxL-matrix Ar for each unit r. 
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Figure 2: LLM Network Architecture 

The output y(net) of a single LLM-network for an input feature vector x E }RL is 

the "winner" node s determined by the minimality condition 

This leads to the learning steps for a training sample (x(o), yeo»): 

f (x(o) _ W(in») 
1 8' 

(3) 

(4) 

(5) 

(6) 
(7) 

applied for T samples (x(o),y(o»),a = 1,2, ... T, and 0 < fi « 1, i = 1,2,3 
denote learning step sizes. The additional term in (6), not given in [11, 121, leads 
to a better decoupling of the effects of (5) and (6,7). 

3 Experiments 

In order to evaluate the generalization performance of this architecture, we con­
sider the problem of time series prediction based on the Mackey-Glass differential 
equation, for which results of other networks already have been reported in the 
literature. 
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Figure 3: Mackey-Glass function 

3.1 Time Series Prediction 

Lapedes and Farber [4] introduced the prediction of chaotic time series as a bench­
mark problem. The data is based on the Mackey-Glass differential equation [8]: 

x(t) = -bx(t) + (ax(t - r))J(l + xlO(t - r)). (8) 

With the parameters a = 0.2, b = 0.1, and r = 17, this equation produces a chaotic 
time series with a strange attractor of fractal dimension d ~ 2.1 (Fig. 3). The 
input data is a vector x(t) = {x(t),x(t - ~),x(t - 2~),x(t - 3~)}T. The learning 
task is defined to predict the value x(t + P). To facilitate comparison, we adopt 
the standard choice ~ = 6 and P = 85. Results with these parameters have been 
reported in [4, 9, 13]. 

The data was generated by integration with 30 steps per time unit. We performed 
different numbers of training epochs with samples randomly chosen from training 
sets consisting of 500 (5000 resp.) samples. The performance was measured on an 
independent test set of 5000 samples. All results are averages over ten runs. The 
error measure is the normalized root mean squ.are error (NRMSE), i.e. predicting 
the average value yields an error value of 1. 

4 Results and Discussion 

The training of the single LLM networks was performed without extensive param­
eter tuning. If fine tuning for each cascade unit would be necessary, the training 
would be unattractively expensive. 

The first results were achieved with cascade networks consisting of LLM units after 
30 training epochs per layer on a learning set of 500 samples. Figs. 4 and 5 represent 
the performance of such LLM cascade networks on the independent test set for 
different numbers of cascaded layers as a function of the number of nodes per layer 
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Figure 4: Iso-Layer-Dependence 
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Figure 5: Error Landscape 

("iso-layer-curves"). The graphs indicate that there is an optimal number N~!~ 
of nodes for which the performance of the single layer network has a best value 
p!~:. Within the single layer architecture, additional nodes lead to a decrease of 
performance due to overfitting. This can only be avoided if the training set is 
enlarged, since N~!~ grows with the number of available training examples. 

However, Figs. 4 and 5 show that adding more units in the form of an additional, 
cascaded layer allows to increase performance significantly beyond p!~:. Similarly, 
the optimal performance of the resulting two-layer network cannot be improved 
beyond an optimal value p!;~ by arbitrarily increasing the number of nodes in the 
two-layer system. However, adding a third cascaded layer again allows to make use 
of more nodes to improve performance further, although this time the relative gain 
is smaller than for the first cascade step. The same situation repeats for larger 
numbers of cascaded layers. This suggests that the cascade architecture is very 
suitable to exploit the computational capabilities of large numbers of nodes for the 
task of building networks that generalize well from small data sets without running 
into the problem of overfitting when many nodes are used . 

A second way of comparing the benefits of shallow and broad versus narrow and 
deep architectures is to compare the performance achieveable by distributing a fixed 
number N of nodes over different numbers L of cascaded layers. Fig. 6 shows the 
result for the same benchmark problem as in Fig. 4, each graph belonging to one of 
the values N = 40,60,120,240 nodes and representing the NRMSE for distributing 
the N nodes among L layers of N / L nodes each t, L ranging from 1 to 10 layers 
("iso-nodes-curves" ). 

1 rounding to the nearest integral, whenever N / L is nonintegral. 
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Figure 7: Nodes-Layer-Dependence 

(i) the optimal number of layers increases monotonously with - and is roughly 
proportional to - the number of nodes to be used. 

(ii) if for each number of nodes the optimal number of layers is used, perfor­
mance increases monotonously with the number of available nodes, and 
thus, as a consequence of (i), with the number of cascaded layers. 

These results are not restricted to small data sets only. The application of the 
cascade algorithm is also useful if larger training sets are available. Fig. 7 represents 
the performance of LLM cascade networks on the test set after 300 training epochs 
overall on a learning set consisting of 5000 samples. As could be expected, there is 
still no sign of overfitting, even using LLM networks with 100 nodes per layer. But 
regardless of the size of the single LLM unit, network performance is improved by 
the cascade process at least in a zone involving a total of some 300 nodes in the 
whole cascade. 

5 Conclusions 

Summarizing, we find that Cascade Network Architectures allow to use the benefits 
of large numbers of nodes even for small training data sets, and still bypass the 
problem of overfitting. To achieve this, the "width" of each layer must be matched 
to the size of the training set. The "depth" of the cascade then is determined by 
the total number of nodes available. 
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