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Abstract 

Many techniques for model selection in the field of neural networks 
correspond to well established statistical methods. The method 
of 'stopped training', on the other hand, in which an oversized 
network is trained until the error on a further validation set of ex­
amples deteriorates, then training is stopped, is a true innovation, 
since model selection doesn't require convergence of the training 
process. 

In this paper we show that this performance can be significantly 
enhanced by extending the 'non convergent model selection method' 
of stopped training to include dynamic topology modifications 
(dynamic weight pruning) and modified complexity penalty term 
methods in which the weighting of the penalty term is adjusted 
during the training process. 

1 INTRODUCTION 

One of the central topics in the field of neural networks is that of model selection. 
Both the theoretical and practical side of this have been intensively investigated and 
a vast array of methods have been suggested to perform this task. A widely used 
class of techniques starts by choosing an 'oversized' network architecture then either 
removing redundant elements based on some measure of saliency (pruning), adding a 
further term to the cost function penalizing complexity (penalty terms), and finally, 
observing the error on a further validation set of examples, then stopping training 
as soon as this performance begins to deteriorate (stopped training). The first 
two methods can be viewed as variations of long established statistical techniques 
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corresponding in the case of pruning to specification searches, and with respect to 
penalty terms as regularization or biased regression. 

The method of stopped training, on the other hand, seems to be one of the true 
innovations to come out of neural network research. Here, the model chosen doesn't 
require the training process to converge, rather, the training process is used to per­
form a directed search of weight space to find a model with superior generalization 
performance. Recent theoretical ([B,C,91], [F,91], [F,Z,91]) and empirical results 
([H,F ,Z,92], [W,R,H,90]) have provided strong evidence for the efficiency of stopped 
training. In this paper we will show that generalization performance can be fur­
ther enhanced by expanding the 'nonconvergent method' of stopped training to 
include dynamic topology modifications (dynamic pruning) and modified complex­
ity penalty term methods in which the weighting of the penalty term is adjusted 
during the training process. Here, the empirical results are based on an extensive se­
quence of simulation examples designed to reduce the effects of domain dependence 
on the performance comparisons. 

2 CLASSICAL MODEL SELECTION 

Classical model selection methods are generally divided into a number of steps 
that are performed independently. The first step consists of choosing a network 
architecture, then either an objective function (possibly including a penalty term) 
is chosen directly, or in a Bayesian setting, prior distributions on the elements of 
the data generating process (noise, weights in the model, regularizers, etc.) are 
specified from which an objective function is derived. Next, using the specified 
objective function, the training process is started and continued until a convergence 
criterion is fulfilled. The resulting parametrization of the given architecture is then 
placed in a 'pool' from which a final model will be selected. 

The next step can consist of a modification of the network architecture (for exam­
ple by pruning weights/hidden-neurons/input-neurons), or of the penalty term (for 
example by changing its weighting in' the objective function) or of the Bayesian 
prior distributions. The last two modifications then result in a modification of 
the objective function. This establishes a new framework for the training process 
which is then restarted and continued until convergence, producing another model 
for the pool. This process is iterated until the model builder is satisfied that the 
pool contains a reasonable diversity of candidate models, which are then compared 
with one another using some estimator of generalization ability, (for example, the 
performance on a validation set). 

Stopped training, on the other hand, has a fundamentally different character. Al­
though the choice of framework remains the same, the essential innovation consists 
of considering every parametrization of a given architecture as a potential model. 
This contrasts with classical methods in which only those parametrizations corre­
sponding to minima of the objective function are taken into consideration for the 
model pool. 

Under the weight of accumulated empirical evidence (see [W,R,H,90], [H,F,Z,92]) 
theorists have begun to investigate the properties of this technique and have been 
able to show that stopped training has the same sort of regularization effect (Le. 
reduction of model variance at the cost of bias) that penalty terms provide (see 
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[B,C,91], [F,91]). Since the basic effect of pruning procedures is also to reduce 
network complexity (and consequent model variance) one sees that there is a close 
relationship in the instrumental effects of stopped training, pruning and regular­
ization. The question remains whether (or under what circumstances) anyone or 
combination of these methods produces superior results. 

3 THE METHODS TESTED 

In our expirements a single hidden layer feedforward network with tanh activation 
functions and ten hidden units was used to fit data sets generated in such a manner 
that network complexity had to be reduced or constrained to prevent overfitting. A 
variety of both classical and non convergent methods were tested for this purpose. 
The first we will discuss used weight pruning. To characterize the relevance of a 
weight in a given network, three different test variables were used. The first simply 
measures weight size under the assumption that the training process naturally forces 
nonrelevant weights into a region around zero. The second test variable is that used 
in the Optimal Brain Damage (OBD) pruning procedure of Le Cun et al. (see 
[L,D,S,90]). The final test variables considered are those proposed by Finnoff and 
Zimmermann in [F,Z,91], based on significance tests for deviations from zero in the 
weight update process. 

Two pruning algorithms were used in the experiments, both of which attempt to 
emulate successful interactive methods. In the first algorithm, one removes a cer­
tain fixed percentage of weights in the network after a stopping criterion is reached. 
The reduced network is then trained further until the stopping criterion is once 
again fulfilled. This process is then repeated until performance breaks down com­
pletely. This method will be referred to in the following as auto-pruning and was 
implement.ed using all three types of test variables to determine the weights to be 
removed. The only difference lay in the stopping criterion used. In the case of 
the OBD test variables, training was stopped after the training process converged. 
In the case of the statistical and small weight test variables, training was stopped 
whenever overtraining (defined by a repeated increase in the error on a validation 
set) was observed. A final (restart) variant of auto-pruning using the statistical 
test variables was also tested. This version of auto-pruning only differs in that the 
weights are reinitialized (on the reduced topology) after every pruning step. In 
the tables of results presented in the appendix, the results for auto-pruning using 
the statistical (resp. small weight, resp. OBD) test variables will be denoted by p. 
(resp. G*, resp. 0*). The version of auto-pruning using restarts will be denoted by 
p •. 

The second method uses the statistical test variables to both remove and reactivate 
weights. As in auto-pruning the network is trained until overfitting is observed after 
a fixed number of epochs, then test values are calculated for all active and inactive 
weights. Here a fixed number £ > 0 is given, corresponding to some quantile value 
of a probability distribution. If the test variable for an active weight falls below 
£ the weight is pruned (deactivated). For weights that have already been set to 
zero, the value of the test variables are compared with £, and if larger, the weight is 
reactivated with a small random value. Furthermore, the value of £ is increased by 
some ~£ > 0 after each pruning step until some value £ma~ is reached. This method 
is referred to as epsi-pruning. Epsi-pruning was tested in versions both with (e·) 
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and without restarts (E*). 

Two complexity penalty terms were considered. These consist of a further term 
C-\(w) added to the error function which forces the network to achieve a compro­
mise between fit and network complexity during the training process; here, the 
parameter A E [0,00) controls the strength of the complexity penalty. The first is 
the quadratic term, the first derivative of which leads to the so-called weight decay 
term in the weight updates (see [H,P,S9]). The second is the Weigend/Rumelhart 
penalty term (see [W,R,H,91]). The weight decay penalty term was tested using 
two techniques. [n the first of these, (D*), A was held constant throughout the 
training process. In the second, (d*), ..\ was set to zero until overtraining was ob­
served, then turned on and held constant for the remainder of the training process. 
The Weigend/Rumelhart penalty term was also tested using these two methods 
(denoted in the following tables by W·, resp. w*). Further, the algorithm suggested 
by A. Weigend in [W,R,H,91] in which the value of A is varied during training was 
considered (wF). 

In addition to the pruning and penalty term methods investigated, two (simple) 
versions of stopped training were tested, in one case (nN) with a constant learning 
step throughout, and in the other (nF) with the step size reduced after overtra.ining 
was observed. Finally three benchmarks were included. All these involved training 
a network until convergence to emulate the situation when no precautions are taken 
to prevent overfitting other than varying the number of hidden units. The number 
of hidden units in these benchmark tests was set at three, six and ten, (#3, #6, 
##) this last network having then the same topology as that used in the remaining 
tests. 

4 THE DATA GENERATION PROCESSES 

To test the methods under consideration, a number of processes were used to 
generate data sets. By testing on a sufficiently wide range of controlled exam­
ples one hopes to reduce the domain dependence that might arise in the perfor­
mance comparisons. The data used in our experiments was based on pairs (Yi, z~, 
i = 1, ... , T, TEN with targets 'iii E R and inputs Zi = (xt, ... , zf) E [-1,1] , 
where Yi = g(zt, ... , xi) + Ui, for j, KEN. Here, 9 represents the structure in the 
data, xl, ... , z1 the relevant inputs, xJ+1, ... , zK, the irrelevant or decoy inputs and 
Ui a stochastic disturbance term. 

The first group of experiments was based on an additive structure 9 having the 
following form with j = 5 and K = 10, g(xf, ... , z~) = E:=l l(aA: z1), aA: E R 
and I either the identity on R or sin. The second class of models investigated had 
a highly nonlinear product structure 9 with j = 3, K = 10 and g(zt, ... , zr) = 
n:=l I( ale x1), ale E R and I once again either the identity on R or sin. The 
next structure considered was constructed using sums of Radial Basis Functions 
(RB ') 11 ( 1 5) - ,,8 (1)' (,,5 (a'""- zon2

) • h A:,I F s as fo ows, 9 zi' ... , zi - L,.../=l - exp L,...A:=l 2q2 ,Wlt a E 
R for k = 1, ... ,5, I = 1, ... ,8. Here, for every 1= 1, ... ,8 the vector parameter 
(a l ", ... , a lS ,,) corresponds to the center of the RBF. The final group of experiments 
were conducted using data generated by feedforward network activation functions. 
The network used for this task had fifty input units, two hundred hidden units and 
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one output. In every experiment, the data was divided into three disjoint subsets 

1)t,1)",1)g: The first set 1), was used for training, the second 1)" (validation) 
set to test for overfitting and to steer the pruning algorithms and the third 1), 
(generalization) set to test the quality of the model selection process. 

5 DISCUSSION 

The results of the experiments are given ~elow. Here we give a short review of the 
most interesting phanomena observed. 

Notable in a general sense is a striking domain dependence in the performance, 
which illustrates the danger of basing a comparison of methods on tests using a 
single (particularly small) data set. Another valuable observation is that by testing 
at higher levels of significance, apparent performance differences can dwindle or even 
disappear. Finally, one sees that even in the examples without noise that overfitting 
occurs, which contradicts the frequently stated conviction that overfitting is noise 
fitting. 

With regard to specific methods, one sees that all the methods tested significantly 
improved generalization performance when compared to the benchmarks. Further, 
the results show that the extended non convergent methods are on average superior 
(sometimes dramatically so) than their classical counterparts. In particular, the 
performance of penalty terms is greatly enhanced if they are first introduced in the 
training process after overtraining is observed. Further, dynamic pruning using the 
statistical or even the small weight test variables produces significantly better results 
than stopped training alone or using the Optimal Brain Damage (OBD) weight 
elimination method which requires training to minima of the objective function. A 
final notable observation is that the pruning methods (especially those using resarts) 
generally work better in the examples with a great deal of noise, while the penalty 
term methods are superior when the structure is highly nonlinear. 

6 TABLES OF RESULTS 

The experiments were performed as follows: First, each data generating process 
was used to produce six independent sets of data and initial weights to increase the 
statistical significance of observed effects and to help reduce the effects of any data 
set specific anomalies. In a second step, the parameters of the training processes 
were optimized for each example by extensive testing, then a fixed value for each 
parameter was chosen for use across the entire range of experiments. With these 
parameters, each method was tested on all of the six data sets produced by one data 
generating process. Both the penalty terms and the pruning methods were tested 
with different settings of the relevant parameters in each model. The parameter 
values used in the simulations and an overview of the methods tested are collected 
in the following two tables. 
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6.1 Parameter Settings of the Experiments 

lze earn tep 
Vt!V,,/V before/after overfitting 

exp __ n 4 o 10 . 5 O. 5 
exp_3-n 0.3 400/200/1000 0.05/0.005 
exp_6-n 0.6 400/200/1000 0.05/0.005 
id_7..n 0.7 200/100/1000 0.05/0.005 
id_B_n O.B 200/100/1000 0.05/0.005 
id_9_n 0.9 200/100/1000 0.05/0.005 
n_Ojd 0.0 1400/600/1000 0.05/0.01 
n_Lid 0.1 1400/600/1000 0.05/0.01 
n_2jd 0.2 1400/600/1000 0.05/0.01 
n_O-Bin 0.0 1400/600/1000 0.05/0.01 
n_1-Bin 1400/600/1000 0.05/0.01 
n_2-Bin 1400/600/1000 0.05/0.01 
net_ -n 0 
net_3..n 0.3 400/200/1000 0.05/0.005 
net_6..n 0.6 400/200/1000 0.05/0.005 
sin_O-n 0.0 400/200/1000 0.05/0.005 
sin_3_n 0.3 400/200/1000 0.05/0.005 
sin_6_n 0.6 400 200/1000 0.05/0.005 

6.2 Overview of Methods Tested 
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The following tables give categorical rankings of the results. The rankings were 
calculated as follows: The method with the best performance was given ranking 
I, then the performance of each following method was compared with that of the 
method on the first position using a modified t-test statistic. The first method in 
the list whose test results deviated from that on the first position to at least the 
quantile value of the statistic given at the head of the table was then used to start 
the second category. All those whose test results did not deviate by at least this 
amount were given the same ranking as the leading method of the category, (in this 
case 1). Following categories were then formed in an analogous fashion using test 
results measured against the performance of the leading method at the head of the 
category. 

The results are presented in two tables. The first contains the results for the data 
generating processes without noise and the second for the models with noise. The 
categorical rankings given were determined using the procedure described above at 
a 0.9 level of significance. The ordering of the methods given, listed in the first 
column, is based on the average ranking over all the simulations listed in the table. 
This average is given in the second column. 

6.2.1 Data Generating Processes without Noise 

Classification by objective function, ta = 0.9 

method av exp_O_n n_O.Jd n_O_sm neLO_n slD_O_n 
d* 1.6 1 3 1 2 1 
P'" 1.8 2 2 2 1 2 
w'" 2.0 1 2 3 3 1 
wf' 2.0 2 1 3 2 2 
G* 2.2 2 3 3 1 2 
t;'" 2.6 2 5 3 1 2 
0'" 2.6 3 4 2 2 2 
p* 2.6 4 5 2 1 1 
nF 3.0 3 5 3 2 2 
e'" 3.8 4 6 4 3 2 

nN 3.8 4 7 4 1 3 
## 5.2 5 8 4 3 6 
W* 5.6 8 10 7 1 2 
D* 5.8 8 11 7 2 1 
6# 6.2 6 9 6 5 5 
3# 6.4 7 12 5 4 4 
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6.2.2 Data Generating Processes with Noise 

Classification by objective function, ta = 0.9 

method av exp exp id n_l n_l n_2 
_3_n _6_n _9_n Jd ..sin Jd 

P'" 2.1 3 1 4 2 2 1 
d'" 2.2 5 5 3 1 1 2 
p'" 2.2 2 1 1 3 5 3 

wI" 2.2 4 5 3 1 4 1 
e'" 2.2 1 2 1 4 5 3 
~'" 2.6 3 3 2 4 4 3 
<1'" 2.7 4 4 3 3 3 3 
0'" 2.8 5 5 3 3 5 4 
w'" 2.8 5 5 3 3 5 3 
nF 2.9 5 5 3 3 5 3 
nN 3.5 5 5 4 4 5 3 
ll'" 3.7 5 4 5 1 5 7 

W'" 4.1 5 4 5 5 6 7 
## 5.2 6 6 6 6 5 5 
3# 5.3 7 7 7 7 5 'l 
6# 5.4 8 8 8 5 4 6 
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