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Abstract 

Networks with local inhibition are shown to have enhanced compu­
tational performance with respect to the classical Hopfield-like net­
works. In particular the critical capacity of the network is increased 
as well as its capability to store correlated patterns. Chaotic dy­
namic behaviour (exponentially long transients) of the devices in­
dicates the overloading of the associative memory. An implementa­
tion based on a programmable logic device is here presented. A 16 
neurons circuit is implemented whit a XILINK 4020 device. The 
peculiarity of this solution is the possibility to change parts of the 
project (weights, transfer function or the whole architecture) with 
a simple software download of the configuration into the XILINK 
chip. 

1 INTRODUCTION 

Attractor Neural Networks endowed with local inhibitory feedbacks, have been 
shown to have interesting computational performances[I]. Past effort was con­
centrated in studying a variety of synaptic structures or learning algorithms, while 
less attention was devoted to study the possible role played by different dynamical 
schemes. The definition of relaxation dynamics is the central problem for the study 
of the associative and computational capabilities in models of attractor neural net­
works and might be of interest also for hardware implementation in view of the 
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constraints on the precision of the synaptic weights. 

In this paper, we give a brief discussion concerning the computational and physical 
role played by local inhibitory interactions which lead to an effective non-monotonic 
transfer function for the neurons. In the last few years others models characterized 
by non-monotonic neurons have been proposed[2,3]. 

For Hebbian learning we show, numerically, that the critical capacity increases with 
respect to the Hopfield case and that such result can be interpreted in terms of a 
twofold task realized by the dynamical process. By means of local inhibition, the 
system dynamically selects a subspace (or subnetwork) of minimal static noise with 
respect to the recalled pattern; at the same time, and in the selected subspace, the 
retrieval of the memorized pattern is performed. The dynamic behaviour of the 
network, for deterministic sequential updating, range from fixed points to chaotic 
evolution, with the storage ratio as control parameter, the transition appearing 
in correspondence to the collapse of the associative performance. Resorting to two 
simplified versions of the model, we study the problem of their optimal performance 
by the replica method; in particular the role of non-monotonic functions and of 
subspaces dynamical selection are discussed. 

In a second part of the work, the implementation of the discussed model by means 
ofaXILINK programmable gate array is discussed. The circuit implements a 16-32 
neurons network in which the analogical characteristics (such as a capacitive decay) 
are emulated by digital solutions. As expected, the limited resolution of the weghts 
does not represent a limit for the performance of the network. 

2 THE MODEL: theory and performance 

We study an attractor neural network composed of N three state ±1,O formal 
neurons. The ± 1 values code for the patterns (the patterns are indeed binary) and 
are thus used during the learning phase, while the O-state is a don't care state, not 
belonging to the patterns code, which has only a dynamical role. The system is 
assumed to be fully connected and its evolution is governed by sequential or parallel 
updating of the following equations 

(1) 

N 

hi(t + 1) = >'hi(t) + L JijSj(t) i = l, ... ,N (2) 
j=l 

where,), is a dynamic threshold of the local inhibitory feedback (typically we take 
')'(t) = fr 2:i Ihi(t - 1)1), the {Jij} are the synaptic conductances and>' is a capac-
itive decay factor of the input potential (>. = e~, where T = RC). 

The performance of the network are described in terms of two parameters which 
have both a dynamical and a computational simple interpretation. In particular we 
define the retrieval activity as the fraction of neurons which are not not in the 
zero state 
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(3) 

while the parameter that defines the retrieval quality is the scaled overlap 

p. _ 1 ""' tP.S m - N ~,"i i· a . , 
(4) 

where the {er = ±1, i = 1, N; J.L = 1, P} are the memorized binary patterns. The 
scaled overlap can be thought simply as the overlap computed in the subspace M 
of the active neurons, M = {i / Si # 0, i = 1, N}. 

Given a set of P random independent binary patterns {er}, the Hebb-Hopfield 
learning rule corresponds to fix the synaptic matrix Jij by the additive relation 

p 

Jij = ~ L ere: (with Jii = 0). The effect of the dynamical process defined by 
p.=1 

(1) and (2) is the selection of subspaces M of active neurons in which the static 
noise is minimized (such subspaces will be hereafter referred to as orthogonal sub­
spaces). Before entering in the description of the results, it is worthwhile to remem­
ber that, in Hopfield-like attractor neural networks, the mean of cross correlation 
Huctuations produce in the local fields of the neurons a static noise, referred to as 
cross-talk of the memories. Together with temporal correlations, the static noise is 
responsible of the phase transition of the neural networks from associative memory 
to spin-glass. More pTecisely, when the Hopfield model is in a fixed point elF which 
belongs to the set of memories, the local fields are given by hier = 1 + Rf where 

Rf = ~ L L er e: er t; is the static noise (gaussian distribution with 0 mean and 
P.¢lF j¢i 

variance va). 
The preliminary performance study of the model under discussion have revealed 
several new basic features, in particular: (i) the critical capacity, for the Hebb 
learning rule, results increased up to Q c ::::; 0.33 (instead of 0.14[4]); (ii) the mean 
cross correlation Huctuations computed in the selected subspaces is minimized by 
the dynamical process in the region Q < Q c ; (iii) in correspondence to the associative 
transition the system goes through a dynamic transition from fixed points to chaotic 
trajectories. 

The quantitative results concerning associative performance, are obtained by means 
of extended simulations. A typical simulation takes the memorized patterns as 
initial configurations and lets the system relax until it reaches a stationary point. 
The quantity describing the performance of the network as an associative memory 
is the mean scaled overlap m between the final stationary states and the memorized 
patterns, used as initial states. As the number of memorized configurations grows, 
one observes a threshold at Q = Q c ::::; 0.33 beyond which the stored states become 
unstable. (numerical results were performed for networks of size up to N = 1000). 
We observe that since the recall of the patterns is performed with no errors (up to 
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a ~ 0.31), also the number of stored bits in the synaptic matrix results increased 
with respect to the Hopfield case. 

The typical size of the sub-networks DM, like the network capacity, depends on the 
threshold parameter l' and on the kind of updating: for 1'(t) = fv I:i Ihi(t -1)1 and 
parallel updating we find DM ::: N/2 (a c = 0.33). 

The static noise reduction corresponds to the minimization of the mean fluctuation 
of the cross correlations (cross talk) in the subspaces, defined by 

where ei = 1 if i E M in pattern a and zero otherwise, as a function of a. Under 
the dynamical process (1) and (2), C does not follow a statistical law but undergoes 
a minimization that qualitatively explains the increase in the storage capacity. For 
a < a c , once the system has relaxed in a stationary subspace, the model becomes 
equivalent (in the subspace) to a Hopfield network with a static noise term which is 
no longer random. The statistical mechanics of the combinatorial task of minimizing 
the noise-energy term (5) can be studied analytically by the replica method; the 
results are of general interest in that give an upper bound to the performance 
of networks endowed with Hebb-like synaptic matrices and with the possibility 
selecting optimal subnetworks for retrieval dynamics of the patterns[8]. 

As already stated, the behaviour of the neural network as a dynamical system is 
directly related to its performance as an associative memory. The system shows 
an abrupt transition in the dynamics, from fixed points to chaotic exponentially 
long transients, in correspondence to the value of the storage ratio at which the 
memorized configurations become unstable. The only (external) control parameter 
of the model as a dynamical system is the storage ratio a = P / N. Dynamic complex 
behaviour appears as a clear signal of saturation of the attractor neural network 
and does not depend on the symmetry of the couplings. 

As a concluding remark concerning this short description of the network perfor­
mance, we observe that the dynamic selection of subspaces seems to take advantage 
of finite size effects allowing the storage of correlated patterns also with the simple 
Hebb rule. Analytical and numerical work is in progress on this point, devoted to 
clarify the performance with spatially correlated patterns[5]. 

Finally, we end this theoretical section by addressing the problem of optimal per­
formance for a different choice of the synaptic weights. In this direction, it is of 
basic interest to understand whether a dynamical scheme which allows for dynamic 
selection of subnetworks provides a neural network model with enhanced optimal 
capacity with respect to the classical spin models. Assuming that nothing is known 
about the couplings, one can consider the Jij as dynamical variables and study the 
fractional volume in the space of interactions that makes the patterns fixed points 
of the dynamics. Following Gardner and Derrida[6] , we describe the problem in 
terms of a cost-energy function and study its statistical mechanics: for a generic 
choice of the {Jij }, the cost function Ei is defined to be the number of patterns 
such that a given site i is wrong (with respect to (1)) 
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p 

Ei( {Jij }, {€f}) = L [€f (e(hfer +,,) - e(hfer)) + (1 - €f)eb 2 - hf2)] (6) 
1-'=1 

where e is the step function, the hf = ~ L Jijej €} are the local fields, " is the 
vN . 

J 

threshold of the inhibitory feedback and with €f = {O, I} being the variables that 
identify the subspace M (€f = 1 if i E M and zero otherwise). 

In order to estimate the optimal capacity, one should perform the replica theory on 
the following partition function 

(7) 

Since the latter task seems unmanageable, as a first step we resort to two simplified 
version of the model which, separately, retain its main characteristics (subspaces 
and non-monotonicity); in particular: 

(i) we assume that the {€f} are quenched random variables, distributed according 
to P(€f) = (1 - A)6(€f) + A6(€f - 1), A E [0,1]; 

(ii) we consider the case of a two-state (±1) non-monotonic transfer function. 

For lack of space, here we list only the final results. The expressions of the R.S. 
critical capacity for the models are, respectively: 

{ (' A 100 }-l Q~.s· b; A) = 2(1 - A) Jo D(b - ()2 + "2 + A"y D(b - ()2 (8) 

(9) 

1 ~ 
where D( = J7Le 2 d( (for (9) see also Ref.[4]). 

V 271" 

The values of critical capacity one finds are much higher than the monotonic per­
ceptron capacity (Qc = 2). Unfortunately, the latter results are not reliable in that 
the stability analysis shows that the RS solution are unstable. Replica symmetry 
breaking is thus required. All the details concerning the computation with one step 
in replica symmetry breaking of the critical capacity and stabilities distribution can 
be found in Ref.[9]. Here we just quote the final quantitative result concerning op­
timal capacity for the non-monotonic two-state model: numerical evaluation of the 
saddle-point equations (for unbiased patterns) ~ives Qcbopt) ~ 4.8 with "opt ~ 0.8, 
the corresponding R.S. value from (9) being Q c .5 . ~ 10.5. 
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3 HARDWARE IMPLEMENTATION: a digital 
programmable integrated circuit 

The performance of the network discussed in the above section points out the good 
behavior of the dynamical approach. Our goal is now to investigate the performance 
of this system with special hardware. Commercial neural chips[9] and[10] are not 
feasible: the featu res of our net require non monotonic transfer characteristic due 
to local inhibitions. These aspects are not allowed in traditional networks. The 
implementation of a full custom chip is, on the other side, an hasty choice. The 
model is still being studied: new developments must be expected in the next future. 
Therefore we decided to build a prototype based on programmable logic circuits. 
This solution allows us to implement the circuit in a short time not to the detri­
ment of the performance. Moreover the same circuit will be easily updated to the 
next evolutions. After an analysis of the existing logic circuits we decided to use 
the FPGAs devices[ll]. The reasons are that we need a large quantity of internal 
registers, to represent both synapses and capacitors, and the fastest interconnec­
tions. Xilinx 4000 family[12] offers us the most interesting approach: up tp 20000 
gates are programmable and up to 28 K bit of Ram are available. Moreover a 3 
ns propagation delay between internal blocks allow to implement very fast systems. 
We decided to use a XC4020 circuit with 20000 equivalent gates. Main problems re­
lated to the implementation of our model are the following: (a) number of neurons, 
(b) number of connections and (c) computation time parameters. (a) and (b) are 
obviously related to the logic device we have at our disposal. The number of gates 
we can use to implement the transfer function of our non monotonic neurons are 
mutually exclusive with the number of bits we decide to assign to the weights. The 
20000 gates must be divided between logic gates and Ram cells. The parameter 
(c) depends on our choices in implementing the neural network. We can decide to 
connect the logic blocks in a sequential or in a parallel way. The global propagation 
time is the sum of the propagation delays of each logic block, from the the input 
to the output. Therefore if we put more blocks in parallel we don't increase the 
propagation delay and the time performance is better. Unfortunately the parallel 
solution clashes with the limitations of available logic blocks of our device. There­
fore we decided to design two chips: the first circuit can implement 16 neurons in a 
faster parallell implementation and the second circuit allow us to use 32 (or more) 
neurons in a slower serial approach. Here we'll describe the fastest implementation. 

Figure 1 shows the 16 neurons of the neural chip. Each neuron, described in figure 2, 
performs a sequential sum and multiplication of the outputs of the other 15 neurons 
by the synaptic values stored inside the internal Ram. A special circuit implements 
the activation function described in the previuos section. All the neurons perform 
these operations in a parallel way: 15 clock pulses are sufficient to perform the 
complete operation for the system. Figure 2 shows the circuit of the neuron. Tl 
is a Ram where the synapses Tij are stored after the training phase. Ml and 
Al perform sums and multiplications according to our model. Dl simulates the A 
decay factor: every 15 clock cycles, which correspond to a complete cycle of sum and 
multiplication for all the 16 neurons, this circuit decreases the input of the neuron 
of a factor A. The activation function (1) is realized by Fl. Such circuit emulates 
a three levels logic, based on -1, 0 and +1 values by using two full adder blocks. 
Limitation due to the electrical characteristic of the circuit, impose a maximum 
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clock cycle of 20 MHz . The 16 neurons verSlOn of the chip takes from 4 to 6 
complete computations to gain stability and every computation is 16 clock cycles 
long. Therefor e the network gives a stable state after 3 J.1.S at maximum. The 
second version of this circuit allows to use more neurons at a lower speed. We used 
the Xilinx device to implement one neuron while the synapses and the capacitors 
are stored in an external fast memory. The single neuron is time multiplexed in 
order to emulate a large number identical devices. At each step, both synapses 
and state variables are downloaded and uploaded from an external memory. This 
solution is obviously slower than the tirst one but a larger number of nerons can be 
implemented. A 32 neurons version takes about 6 J.1.S to reach a stable configuration. 
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4 CONCLUSION 

A modified approach to attractor neural networks and its implementation on a 
XILINK XC4020 FPGA was discussed. The chip is now under test. Six /-L8 are 
sufficient for the relaxation of the system in a stable state, and the recognition of 
an input pattern is thus quite fast. A next step will be the definition of a multiple 
chip system endowed with more than 32 neurons, with the weights stored in an 
external fast memory. 
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