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Abstract 

We describe an analog VLSI implementation of a multi-dimensional 
gradient estimation and descent technique for minimizing an on­
chip scalar function fO. The implementation uses noise injec­
tion and multiplicative correlation to estimate derivatives, as in 
[Anderson, Kerns 92]. One intended application of this technique 
is setting circuit parameters on-chip automatically, rather than 
manually [Kirk 91]. Gradient descent optimization may be used 
to adjust synapse weights for a backpropagation or other on-chip 
learning implementation. The approach combines the features of 
continuous multi-dimensional gradient descent and the potential 
for an annealing style of optimization. We present data measured 
from our analog VLSI implementation. 

1 Introduction 

This work is similar to [Anderson, Kerns 92], but represents two advances. First, we 
describe the extension of the technique to multiple dimensions. Second, we demon­
strate an implementation of the multi-dimensional technique in analog VLSI, and 
provide results measured from the chip. Unlike previous work using noise sources 
in adaptive systems, we use the noise as a means of estimating the gradient of a 
function f(y), rather than performing an annealing process [Alspector 88]. We also 
estimate gr-;:dients continuously in position and time, in contrast to [Umminger 89] 
and [J abri 91], which utilize discrete position gradient estimates. 
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It is interesting to note the existence of related algorithms, also presented in this 
volume [Cauwenberghs 93] [Alspector 93] [Flower 93]. The main difference is that 
our implementation operates in continuous time, with continuous differentiation 
and integration operators. The other approaches realize the integration and differ­
entiation processes as discrete addition and subtraction operations, and use unit 
perturbations. [Cauwenberghs 93] provides a detailed derivation of the convergence 
and scaling properties of the discrete approach, and a simulation. [Alspector 93] 
provides a description of the use of the technique as part of a neural network hard­
ware architecture, and provides a simulation. [Flower 93] derived a similar discrete 
algorithm from a node perturbation perspective in the context of multi-layered feed­
forward networks. Our work is similar in spirit to [Dembo 90] in that we don't make 
any explicit assumptions about the "model" that is embodied in the function fO. 
The function may be implemented as a neural network. In that case, the gradient 
descent is on-chip learning of the parameters of the network. 

We have fabricated a working chip containing the continuous-time multi­
dimensional gradient descent circuits. This paper includes chip data for individ­
ual circuit components, as well as the entire circuit performing multi-dimensional 
gradient descent and annealing. 

2 The Gradient Estimation Technique 

d/dt 

d/dt 

Figure 1: Gradient estimation technique from [Anderson, Kerns 92] 

Anderson and Kerns [Anderson, Kerns 92] describe techniques for one-dimensional 
gradient estimation in analog hardware. The gradient is estimated by correlating 
(using a multiplier) the output of a scalar function f( v(t)) with a noise source 
n(t), as shown in Fig. 1. The function input y(t) is additively "contaminated" by 
the noise n(t) to produce v(t) = y(t) + n(t). A scale factor B is used to set the 
scale of the noise to match the function output, which improves the signal-to-noise 
ratio. The signals are "high-pass" filtered to approximate differentiation (shown 
as d/ dt operators in Fig. 1) directly before the multiplication. The results of the 
multiplication are "low-pass" filtered to approximate integration. 

The gradient estimate is integrated over time, to smooth out some of the noise and 
to damp the response. This smoothed estimate is compared with a "zero" reference, 
using an amplifier A, and the result is fed back to the input, as shown in Fig. 2. 
Th~ contents of Fig. 1 are represented by the "Gradient Estimation" box in Fig. 2. 

We have chosen to implement the multi-dimensional technique in analog VLSI. We 
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Gradient [ 
Estimation J dt 

"zero" 

Figure 2: Closing the loop: performing gradient descent using the gradient estimate. 

will not reproduce here the one-dimensional analysis from [Anderson, Kerns 92]' 
but summarize some ofthe more important results, and provide a multi-dimensional 
derivation. [Anderson 92] provides a more detailed theoretical discussion. 

3 Multi-dimensional Derivation 

The multi-dimensional gradient descent operation that we are approximating can 
be written as follows: 

(1) 

where y and y' are vectors, and the solution is obtained continuously in time t, 
rather than at discrete ti. The circuit described in the block diagram in Fig. 1 
computes an approximation to the gradient: 

(2) 

We approximate the operations of differentiation and integration in time by realiz­
able high-pass and low-pass filters, respectively. To see that Eq. 2 is valid, and that 
this result is useful for approximating Eq. 1, we sketch an N-dimensional extension 
of [Anderson 92]. Using the chain rule, 

d ~ of 
dtf 0l.(t) + !let)) = L.-J (yj(t) + nj(t)) ~ 

. Y3 
3 

Assuming nj(t) ~ yj (t), the rhs is approximated to produce 

dd f0l.(t)+n(t)) = Lnj(t)oo~ 
t . Y3 

3 

(3) 

(4) 

Multiplying both sides by ni(t), and taking the expectation integral operator E[ ] 
of each side, 

E [nitt) ~ f 0t(t) + !!(t») 1 = E [n;(t) ~>;(t) :~ ] (5) 

If the noise sources ni(t) and nj (t) are unc.orrelated, nat) is independent of nj (t) 
when i =P j, and the sum on the right has a contribution only when i = j, 

E [ni(t) :t f 0l.(t) + net)) 1 = E [n~(t)n~(t) :~ 1 (6) 
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[ d 1 of E ni(t)- f ~(t) + n(t)) ~ an- = a\l f 
dt UYi 

(7) 

The expectation operator E[] can be used to smooth random variations of the noise 
nj(t). So, we have 

Since the descent rate k is arbitrary, we can absorb a into k. 
can approximate the gradient descent technique as follows: 

y~(t) ~ -k E [ni(t) ~ f (1t(t) + n(t)) 1 

(8) 

U sing equation 8, we 

(9) 

4 Elements of the Multi-dimensional Implementation 

We have designed, fabricated, and tested a chip which allows us to test these ideas. 
The chip implementation can be decomposed into six distinct parts: 

noise source(s): an analog VLSI circuit which produces a noise function. An in­
dependent, correlation-free noise source is needed for each input dimension, 
designated ni(t). The noise circuit is described in [Alspector 91]. 

target function: a scalar function f(Yl , Y2, ... , YN) of N input variables, bounded 
below, which is to be minimized [Kirk 91]. The circuit in this case is a 4-
dimensional variant of the bump circuit described in [Delbriick 91]. In the 
general case, this fO can be any scalar function or error metric, computed 
by some circuit. Specifically, the function may be a neural network. 

input signal(s): the inputs Yi(t) to the function fO. These will typically be on­
chip values, or real-world inputs. 

multiplier circuit(s): the multiplier computes the correlation between the noise 
values and the function output. Offsets in the multiplication appear as 
systematic errors in the gradient estimate, so it is important to compensate 
for the offsets. Linearity is not especially important, although monotonicity 
is critical. Ideally, the multiplication will also have a "tanh-like" character, 
limiting the output range for extreme inputs. 

integrator: an integration over time is approximated by a low-pass filter 

differentiator: the time derivatives of the noise signals and the function are ap-
proximated by a high-pass filter. 

The N inputs, Yi(t), are additively "contaminated" with the noise signals, ni(t), by 
capacitive coupling, producing Vi(t) = Yi(t) + ni(t), the inputs to the function fO. 
The function output is differentiated, as are the noise functions. Each differentiated 
noise signal is correlated with the differentiated function output, using the multi­
pliers. The results are low-pass filtered, providing N partial derivative estimates, 
for the N input dimensions, shown for 4 dimensions in Fig. 3. 

The function fO is implemented as an 4-dimensional extension of Delbriick's 
[D~lbriick 91] bump circuit. Details ofthe N-dimensional bump circuit can be found 
in [Kirk 93]. For learning and other applications, the function fO can implement 
some other error metric to be minimized. 
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Figure 3: Block diagram for a 4-dimensional gradient estimation circuit. 

5 Chi p Results 

We have tested chips implementing the gradient estimation and gradient descent 
techniques described in this paper. Figure 4 shows the gradient estimate, without 
the closed loop descent process. Figure 5 shows the trajectories of two state variables 
during the 2D gradient descent process. Figure 6 shows the gradient descent process 
in operation on a 2D bump surface, and Fig. 7 shows how, using appropriate choice 
of noise scale, we can perform annealing using the gradient estimation hardware. 
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Figure 4: Measured Chip Data: 1D Gradient Estimate. Upper curves are 1D bump 
output as the input yet) is a slow triangle wave. Lower curves are gradient estimates. 
(left) raw data, and (right) average of 1024 runs. 
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Figure 5: Measured Chip Data: 2D Gradient Descent. The curves above show the 
function optimization by gradient descent for 2 variables. Each curve represents 
the path of one of the state variables ¥..(t) from some initial values to the values for 
which the function 10 is minimized. (left) raw data, and (right) average of S runs. 

6 Conclusions 

We have implemented an analog VLSI structure for performing continuous multi­
dimensional gradient descent, and the gradient estimation uses only local informa­
tion. The circuitry is compact and easily extensible to higher dimensions. This 
implementation leads to on-chip multi-dimensional optimization, such as is needed 
to perform on-chip learning for a hardware neural network . We can also perform a 
kind of annealing by adding a schedule to the scale of the noise input. Our approach 
also has some drawbacks, however. The gradient estimation is sensitive to the in­
put offsets in the multipliers and integrators, since those offsets result in systematic 
errors. Also, the gradient estimation technique adds noise to the input signals. 

We hope that with only small additional circuit complexity, the performance of 
analog VLSI circuits can be greatly increased by permitting them to be intrinsically 
adaptive . On-chip implementation of an approximate gradient descent technique is 
an important step in this direction. 
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Inltlol Stote 

Figure 6: Measured Chip Data: 2D Gradient Descent. Here we see the results for 
2D gradient descent on a 2D bump surface . Both the bump surface and t.he descent 
path are actual data measured from our chips . 
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the optimization pat.h . At left, with small magnitude noise, the process descends 
to a local minimum. At right, with larger magnitude, the descent process escapes 
to the global minimum. A schedule of gradually decreasing noise amplitude could 
reduce the probability of getting caught in undesirable local minima, and increase 
the probability of converging to a small region near a more desirable minimum, or 
even the global minimum. 
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