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Abstract

An information-theoretic optimization principle (‘infomax’) has
previously been used for unsupervised learning of statistical reg-
ularities in an input ensemble. The principle states that the input-
output mapping implemented by a processing stage should be cho-
sen so as to maximize the average mutual information between
input and output patterns, subject to constraints and in the pres-
ence of processing noise. In the present work I show how infomax,
when applied to a class of nonlinear input-output mappings, can
under certain conditions generate optimal filters that have addi-
tional useful properties: (1) Output activity (for each input pat-
tern) tends to be concentrated among a relatively small number
of nodes. (2) The filters are sensitive to higher-order statistical
structure (beyond pairwise correlations). If the input features are
localized, the filters’ receptive fields tend to be localized as well.
(3) Multiresolution sets of filters with subsampling at low spatial
frequencies — related to pyramid coding and wavelet representations
— emerge as favored solutions for certain types of input ensembles.

1 INTRODUCTION

In unsupervised network learning, the development of the connection weights is
influenced by statistical properties of the ensemble of input vectors, rather than by
the degree of mismatch between the network’s output and some ‘desired’ output.
An implicit goal of such learning is that the network should transform the input
so that salient features present in the input are represented at the output in a
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more useful form. This is often done by reducing the input dimensionality in a way
that preserves the high-variance components of the input (e.g., principal component
analysis, Kohonen feature maps).

The principle of maximum information preservation (‘infomax’) is an unsupervised
learning strategy that states (Linsker 1988): From a set of allowed input-output
mappings (e.g., parametrized by the connection weights), choose a mapping that
maximizes the (ensemble-averaged) Shannon information that the output vector
conveys about the input vector, in the presence of noise. Such a mapping maximizes
the ensemble-averaged mutual information (MI) between input and output.

This paper (a) summarize earlier results on infomax solutions for linear networks,
(b) identifies some limitations of these solutions (ways in which very different filter
sets are equally optimal from the infomax standpoint), and (c) shows how, by adding
a small nonlinearity to the network, one can remove these limitations and at the
same time improve the utility of the output representations. We show that infomax,
acting on the modified network, tends to favor sparsely coded representations and
(depending on the input ensemble) sets of filters that span multiple resolution scales
(related to wavelets and ‘pyramid coding’).

2 INFOMAX IN LINEAR NETWORKS

For definiteness and brevity, we consider a linear network having a particular type
of noise model and input statistical properties. For a more detailed discussion of
related models see (Linsker 1989).

Since the computation of the MI (which involves the output entropy) is in general
intractable for continuous-valued output vectors, previous work (and the present
paper) makes use of a surrogate MI, which we will call the ‘as-if-Gaussian’ MI. This
quantity is, by definition, computed as though the output vectors comprised a mul-
tivariate Gaussian distribution having the same mean and covariance as the actual
distribution of output vectors. Although expedient, this substitution has lacked a
principled justification. The Appendix shows that, under certain conditions, using
this ‘surrogate MI’ (and not the full MI) is indeed appropriate and justified.

Denote the input vector by S = {S;} (S; is the activity at input node z), the output
vector by Z = {Z,}, the matrix of connection weights by C = {Cy;}, noise at the
input nodes by N = {N;}, and noise at the output nodes by v = {v,}. Then our
processing model is, in matrix form, Z = C (S + N ) +v. Assume that N and v are
Gaussian random va.nables (S)= (N g.‘S'N o) ) (NVT) =0,
and, for the covariance matrices, (S Q, (N N = nI = @ (Angle
brackets denote an ensemble average, superscnpt & denotes tra.nspose, and I and
I' denote unit matrices on the input and output spaces, respectively.) In general,
MI = Hz — (Hz|s) where Hz is the output entropy and Hy|s is the entropy of the
output for given S. Replacing MI by the ‘as-if-Gaussian’ MI means replacing Hz
by the expression for the entropy of a multivariate Gaussian distribution, which is
(apart from an irrelevant constant term) HS = (1/2)Indet Q’, where Q' = (227) =
CQCT + nCCT + BI' is the output covariance. Note that, when S is fixed, Z =
CS+(CN +v) is a Gaussian distribution centered on CS, so that we have (Hz|s) =

(1/2)Indet Q" where Q" = ((CN + v)(CN +v)T) = nCCT + BI'. Therefore the
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‘as-if-Gaussian’ MI is

= (1/2)[Indet Q' — Indet Q"). (1)

The variance of the output at node n (prior to adding noise v,) is V,, = ([C(S +
N)J2) = (CQCT +nCCT)npn. We will constrain the dynamic range of each output
node (limiting the number of output values that can be discriminated from one
another in the presence of output noise) by requiring that V,, = 1 for each n.
Subject to this constraint, we are to find a matrix C that maximizes MI'. For a
local Hebbian algorithm that accomplishes this maximization, see (Linsker 1992).
Here, in order to proceed analytically, we consider a special case of interest.

Suppose that the input statistics are shift-invariant, so that the covariance (S;S;)
is a function of (j — 7). We then use a shift-invariant filter Ansatz, C,; = C(i —n).
Infomax then determines the optimal filter gain as a function of spatial frequency;
i.e., the magnitude of the Fourier components c¢(k) of C(i — n). The derivation is
summarized below.

Denote by g(k), ¢'(k), and ¢"(k) the Fourier transforms of Q(j — i), Q'(m — n),
and Q"(m — n) respectwely Since Q' = CQCT + nCCT + BI', therefore
d'(k) = [g(k) + 1) | c(k) [ +6. Similarly, ¢"(k) = 1 | c(k) [ +5. ‘We obtain
MI' = (1/2)Zk[lng’(k) — Ing”(k)]. Each node’s output variance V;, is equal to

= (1/K)Zi[g(k) +n] | c(k) |*> where K is the number of terms in the sum over k.

To maximize MI' subject to the constraint on V we use the Lagrange multiplier
method; that is, we maximize MI" = MI' + pu(V — 1) with respect to each | ¢(k) |2.
This yields an equation for each k that is quadratic in | ¢(k) |. The unique solution

(1/6) (k) P'= =1 + A1 1 - Loy @)

if the RHS is positive, and zero otherwise. The Lagrange multiplier (< 0) is chosen
so that the {| ¢(k) |} satisfy V = 1.

Starting from a differently-stated goal (that of reducing redundancy subject to a
limit on information loss), which turns out to be closely related to infomax, (Atick
& Redlich 1990a) found an expression for the optimal filter gain that is the same
as that of Eq. 2 except for the choice of constraint.

Filter properties found using this approach are related to those found in early stages
of biological sensory processing. Smoothing and bandpass (contrast-enhancing)
filters emerge as infomax solutions (Linsker 1989, Atick & Redlich 1990a) in certain
cases, and good agreement with retinal contrast sensitivity measurements has been
found (Atick & Redlich 1990b).

Nonetheless, the value of the infomax solution Eq. 2 is limited in two important
ways. First, the phases of the {c(k)} are left undetermined. Any choice of phases is
equally good at maximizing MI' in a linear network. Thus the real-space response
function C(: — n), which determines the receptive field properties of the output
nodes, is nonunique (and indeed may be highly nonlocalized in space).

Second, it is useful to extend the solution Ansatz to allow a number of different filter
types a = 1,..., A at each output site, while continuing to require that each type

955



956

Linsker

satisfy the shift-invariance condition Cpri(a) = C(i — n;a). For example, one may
want to model a topographic ‘retinocortical’ mapping in which each patch of cortex
(each ‘site’) contains multiple filter types, yet each patch carries out the same set of
processing functions on its input. For this Ansatz, one again obtains Eq. 2 (deriva-
tion omitted here), but with | ¢(k) |> on the LHS replaced by Z,p(a)| c(k;a) |?,
where c(k;a) is the F.T. of C(i — n;a), and p(a) is the fraction of the total number
of filters (at each site) that are of type a. The partitioning of the overall (sum-
squared) gain among the multiple filter types is thus left undetermined.

The higher-order statistical structure of the input (beyond covariance) is not being
exploited by infomax in the above analysis, because (1) the network is linear and (2)
only pairwise correlations among the output activities enter into MI'. We shall show
that if we make the network even mildly nonlinear, MI’ is no longer independent of
the choice of phases or of the partitioning of gain among multiple filter types.

3 NETWORK WITH WEAK NONLINEARITY

We consider the weakly nonlinear input-output relation Z,, = U, +EU,? +X;Cni N; +
Vp, Where U, = Z;C,;S;, for small €. This differs from the linear network analyzed
above by the term in U2. (For simplicity, terms nonlinear in the noise are not
included.) The cubic term increases the signal-to-noise ratio selectively when U, is
large in absolute value. We maximize MI’ as defined in Eq. 1.

Heuristically, the new term will cause infomax to favor solutions in which some
output nodes have large (absolute) activity values, over solutions in which all output
nodes have moderate activities. The output layer can thus encode information
about the input vector (e.g., signal the presence of a feature) via the high activity
of a small number of nodes, rather than via the particular activity values of many
nodes. This has several (interrelated) potential advantages. (1) The concentration
of activity among fewer nodes is a type of sparse coding. (2) The resulting output
representation may be more resistant to noise. (3) The presence of a feature can be
signaled to a later processing stage using fewer connections. (4) Since the particular
nodes that have high activity depend upon the input vector, this type of mapping
transforms a set of continuous-valued inputs at each site into a partially place-coded
representation. A model of this sort may thus be useful for understanding better
the formation of place-coded representations in biological systems.

3.1 MATHEMATICAL DETAILS

This section may be skipped without loss of continuity. In matrix form, U = CS,
W, = U} for each n, and Z = U + eW + CN + v. Keeping terms through first
order in €, the output covariance is Q' = (ZZT) = CQCT + nCCT + BI' + €F,
where F = (WUT)+(UWT). [As an aside, Fppn, = (UnUp (U2+U2)) resembles the
covariance (U, Uy, ), except that presentations having large U2 +U? are given greater
weight in the ensemble average.] For shift-invariant input statistics and one filter
type Cr; = C(i—n), taking the Fourier transform yields ¢’(k) = [q(k)+n]| c(k; a) |?+
B+ ef(k) where f(k) is the F.T. of F(m —n) = Fpp,. SoIndetQ' = i Ing'(k) =
= In{fa(k)+1] | (k) [* +B} +¢Eq(k) where g(k) = [£(k) {la(k)+7] c(k;a) [+ Y.
Using a Lagrange multiplier as before, the quantity to be maximized is MI” =
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Figure 1: Breaking of phase degeneracy. See text for discussion.

MI"”(e = 0) + (¢/2)Zg(k).

Now suppose there are multiple filter types a = 1,..., A at each output site. For
each k define d(k) to be the A x A matrix whose elements are: d(k).s = [g(k) +
nlc(k; a)c*(k; b) + [B/p(a)léas Where 8,5 is the Kronecker delta. Also define f(k) to
be the A x A matrix each of whose elements f(k),; is the F.T. of F(m — n;a,b)
where F(m —n;a,b) = (Up(a)W (b)) + (Wn(a)Unm (b)). Then the O(e) part of MI”
is: (€/2)ZpTe{[d(k)]~1f(k)}. Note that [d(k)]~! is the inverse of the matrix d(k),
and that ‘Tr’ denotes the trace. [Outline of derivation: In the basis defined by the
Fourier harmonics, Q' is block diagonal (one A x A block for each k). So Indet Q" =
i Indet ¢’(k) where each ¢'(k) is an A x A matrix of the form qj(k) + eg5(k).
Expanding Indet ¢’(k) through O(¢) yields the stated result.]

The infomax calculation to lowest order in € [i.e., O(€°)] is the same as for the linear
network. Here, for simplicity, we determine the sum-squared gain, £,p(a)| c(k;a) |?,
as in the linear case; then seek to maximize the new term, of O(e), subject to
this constraint on the value of the sum-squared gain. How the nonlinear term
breaks phase and gain-apportionment degeneracies is of interest here; a small O(e)
correction to the sum-squared gain is not.

4 ILLUSTRATIVE RESULTS

Two examples will show how adding the nonlinear perturbative term to the net-
work’s output breaks a degeneracy among different filter solutions. In each case the
input space is a one-dimensional ‘retina’ with wraparound.

4.1 BREAKING THE PHASE DEGENERACY

In this example (see Figure 1) there is one filter type at each output site. We consider
two types of input ensembles: (1) Each input vector (Fig. la shows one example)
is drawn from a multivariate Gaussian distribution (so there is no higher-order
statistical structure beyond pairwise correlations). The input covariance matrix
Q(j7 — 2) is a Gaussian function of the distance between the sites. (2) Each input
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vector is a random sum of Gaussian ‘bumps’: S; = ¥;a;[s(¢ — j) — so] where s(i— j)
is a Gaussian (shown in Fig. 1b for j=20; there are 64 nodes in all); sg is the mean
value of s(z — 7); and each a; is independently and randomly chosen (with constant
probability) to be 1 or 0. This ensemble does have higher-order structure, with
each input presentation being characterized by the presence of localized features
(the bumps) at particular locations.

The infomax solution for | ¢(k) |? is plotted versus spatial frequency k in Fig. lc
for a particular choice of noise parameters (n,3). As stated earlier, MI' for a linear
network is indifferent to the phases of the Fourier components {c(k)}. A particular
random choice of phases produces the real-space filter C(¢ — n) shown in Fig. 1d,
which spans the entire ‘retina.” Setting all phases to zero produces the localized
filter shown in Fig. 1f. If the Gaussian ‘bump’ of Fig. 1b is presented as input to a
network of filters each of which is a shifted version of Fig. 1d, the linear response of
the network (i.e., the convolution of the ‘bump’ with the filter) is shown in Fig. 1le.
Replacing the filter of Fig. 1d by that of Fig. 1f, but keeping the input the same,
produces the output response shown in Fig. 1g.

The cubic nonlinearity causes MI' to be larger for the filter of Fig. 1f than for that of
Fig. 1d. Heuristically, if we focus on the diagonal elements of the output covariance
@', the nonlinear term is 2¢(U}). Maximizing MI’ favors increasing this term (sub-
ject to a constraint on output variance) hence favors filter solutions for which the
U, distribution is non-Gaussian with a preponderance of large values. Projection
pursuit methods also use a measure of the non-Gaussianity of the output distri-
bution to construct filters that extract ‘interesting’ features from high-dimensional
data (cf. Intrator 1992).

4.2 BREAKING THE PARTITIONING DEGENERACY FOR
MULTIPLE FILTER TYPES

In this example (see Fig. 2), the input ensemble comprises a set of self-similar
patterns (each is a sine-Gabor ‘ripple’ as in Fig. 2a) that are related by translation
and dilation (scale change over a factor of 80). Figure 2b shows the input power
spectrum vs. k; the scaling region goes as 1/k. Figure 2c shows the infomax solution
for the gain | ¢c(k;a) | vs. k when there is just one filter type. When the input SNR
is large (as in the scaling region) the infomax filters ‘whiten’ the output; note the
flat portion of the output power spectrum (Fig. 2d). [We modify the infomax
solution by extending the power-law form of | ¢(k) | to low k (dotted line in Figs.
2c,d). This avoids artifacts resulting from the rapid increase in | ¢(k) |, which is
in turn caused by our having omitted low-k patterns from the input ensemble for
reasons of numerical efficiency.] The dotted envelope curve in Figure 2e shows the
sum-squared gain ¥,p(a) | ¢(k) |* when multiple filter types a are allowed. The
quantity plotted is just the square of that shown in Fig. 2¢, but on a linear rather
than log-log plot (note values greater than 5 are cut off to save space).

The network nonlinearity has the following effect. We first allow two filter types
to share the overall gain. Optimizing MI' over various partitionings, we find that
infomax favors a crossover between filter types at k &~ 400. Allowing three, then four,
filter types produces additional crossovers at lower k. For an Ansatz in which each
filter’s share of the sum-squared gain is tapered linearly near its cutoff frequencies,
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the best solution found for each p(a) | ¢(k) |? is shown in Fig. 2e (semilog plot vs.
k). Figure 2f plots the corresponding | ¢(k;a) | vs. k on a linear scale. Note that the
three lower-k filters appear roughly self-similar. (The peak in the highest-k filter is
an artifact due to the cutoff of the input ensemble at high k.) The four real-space
filters C(i—n; a) are plotted vs. (i—n) in Fig. 2g [phases chosen to make C(i—n;a)
antisymmetric].

The resulting filters span multiple resolution scales. The density p(a) is less for the
lower-frequency filters (spatial subsampling). When more filter types are allowed,
the increase in MI' becomes progressively less. Although in our model the filters are
present with density p at each output site, a similar MI’ is obtained if one spaces
adjacent filters of type a by a distance &« 1/p(a). The resulting arrangement of
filters resembles the ‘tiling’ of the joint space and spatial-frequency domain that is
used in wavelet and ‘pyramid coding’ approaches to image processing. [The infomax
filters overlap, rather than disjointly tiling the (z, k) domain.]

Using the infomax method, the region of (z, k) space spanned by an optimal filter
has an aspect ratio that depends upon the relative distances — along the z and k axes
— over which the input feature is ‘coherent’ (possesses higher-order correlations).
One may thus be able to use infomax to predict relationships between statistical
measures of coherence in natural scenes and observed (z, k) aspect ratios for, e.g.,
orientation-selective cells. See (Field 1989) for a discussion of this issue that is not
based on infomax.

5 APPENDIX: HEURISTIC JUSTIFICATION FOR
USING A SURROGATE, ‘AS-IF-GAUSSIAN,’
MUTUAL INFORMATION

The mutual information between input S and output Z is MI
dedZPsz In(Psz/PsPz) = dePsKD(Pms;Pz) where KD(Pz|s;Pz)
J dZ Pz sn(Pz)s/Pz) is a Kullback divergence. So, maximizing MI means maxi-
mizing the average (over S) of KD(Pgzs; Pz).

What does the KD represent? Suppose that the network has somehow learned the
distribution Pz. Before being presented with a particular input S, the network ‘ex-
pects’ an output vector drawn from Pz. The actual output response to S, however,
is a vector drawn from Pz|s. The KD measures the ‘surprise’ (i.e., the amount of
information gained) upon seeing the actual distribution Pz|s when one expected
Pz. Infomax maximizes this average ‘surprise.’

However, the network cannot in general have access to the full distribution Pz,
which contains far too much information (including all higher-order statistics) to
be stored in the connections and nodes of the network. Let us suppose for defi-
niteness that the system remembers only the mean and the covariance matrix of
Z. Define P§ to be the multivariate Gaussian distribution that has the same mean
and covariance as Pz. Then we may think of the system as a priori ‘expecting’ the
output vector to be drawn from the distribution Pg.

We accordingly modify the principle so that we maximize the aver-
age (over S) of KD(Pgzs;P§) (note the superscript G). This equals
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Figure 2: Partitioning among multiple filter types. See text.

[ dSPs [dZPzsIn(Pzs/Pg) = (—~Hgz|s)s — [ dZPzIn P§ (where H denotes en-
tropy). Using a property of the Gaussian distribution, we have — [ dZPzIn P§ =
— [dZP§G InP§ = HS. We conclude that the average of KD equals HS — (Hzs)s,
which is exactly equal to the surrogate ‘as-if-Gaussian’ MI defined preceding Eq. 1.
This argument provides a principled justification for using the surrogate MI, when
the system has stored information about the output vectors’ mean and covariance,
but not about higher-order statistics.
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