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Abstract 

A parallel stochastic algorithm is investigated for error-descent 
learning and optimization in deterministic networks of arbitrary 
topology. No explicit information about internal network struc­
ture is needed. The method is based on the model-free distributed 
learning mechanism of Dembo and Kailath. A modified parameter 
update rule is proposed by which each individual parameter vector 
perturbation contributes a decrease in error. A substantially faster 
learning speed is hence allowed. Furthermore, the modified algo­
rithm supports learning time-varying features in dynamical net­
works. We analyze the convergence and scaling properties of the 
algorithm, and present simulation results for dynamic trajectory 
learning in recurrent networks. 

1 Background and Motivation 

We address general optimization tasks that require finding a set of constant param­
eter values Pi that minimize a given error functional £(p). For supervised learning, 
the error functional consists of some quantitative measure of the deviation between 
a desired state xT and the actual state of a network x, resulting from an input y 
and the parameters p. In such context the components of p consist of the con­
nection strengths, thresholds and other adjustable parameters in the network. A 
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typical specification for the error in learning a discrete set of pattern associations 

(yCa), x TCa ) for a steady-state network is the Mean Square Error (MSE) 

(1) 

and similarly, for learning a desired response (y(t), xT(t» in a dynamic network 

(2) 

For £(p) to be uniquely defined in the latter dynamic case, initial conditions X(tinit) 
need to be specified. 

A popular method for minimizing the error functional is steepest error descent 
(gradient descent) [1]-[6] 

o£ 
Llp = -7]­op (3) 

Iteration of (3) leads asymptotically to a local minimum of £(p), provided 7] is 
strictly positive and small. The computation of the gradient is often cumbersome, 
especially for time-dependent problems [2]-[5], and is even ill-posed for analog hard­
ware learning systems that unavoidably contain unknown process impurities. This 
calls for error descent methods avoiding calculation of the gradients but rather prob­
ing the dependence of the error on the parameters directly. Methods that use some 
degree of explicit internal information other than the adjustable parameters, such 
as Madaline III [6] which assumes a specific feedforward multi-perceptron network 
structure and requires access to internal nodes, are therefore excluded. Two typical 
methods which satisfy the above condition are illustrated below: 

• Weight Perturbation [7], a simple sequential parameter perturbation tech­
nique. The method updates the individual parameters in sequence, by measuring 
the change in error resulting from a perturbation of a single parameter and adjust­
ing that parameter accordingly. This technique effectively measures the compo­
nents of the gradient sequentially, which for a complete knowledge of the gradient 
requires as many computation cycles as there are parameters in the system . 

• Model-Free Distributed Learning [8], which is based on the "M.LT." rule 
in adaptive control [9}. Inspired by analog hardware, the distributed algorithm 
makes use oftime-varying perturbation signals 1I".(t) supplied in parallel to the pa­
rameters Pi, and correlates these 1I"i(t) with the instantaneous network response 
E(p + 11") to form an incremental update Ll.Pi. Unfortunately, the distributed 
model-free algorithm does not support learning of dynamic features (2) in net­
works with delays, and the learning speed degrades sensibly with increasing num­
ber of parameters [8]. 

2 Stochastic Error-Descent: Formulation and Properties 

The algorithm we investigate here combines both above methods, yielding a sig­
nificant improvement in performance over both. Effectively, at every epoch the 
constructed algorithm decreases the error along a single randomly selected direc­
tion in the parameter space. Each such decrement is performed using a single 
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synchronous parallel parameter perturbation per epoch. Let I> = p + 1(' with par­
allel perturbations 1C'i selected from a random distribution. The perturbations 1C'i 

are assumed reasonably small, but not necessarily mutually orthogonal. For a given 
single random instance of the perturbation 1r, we update the parameters with the 
rule 

~p = -I-' £ 1r , (4) 

where the scalar 
t = £(1)) - £(p) (5) 

is the error contribution due to the perturbation 1r, and I-' is a small strictly positive 
constant. Obviously, for a sequential activation of the 1C'i, the algorithm reduces to 
the weight perturbation method [7]. On the other hand, by omitting £(p) in (5) 
the original distributed model-free method [8] is obtained. The subtraction of the 
unperturbed reference term £(p) in (5) contributes a significant increase in speed 
over the original method. Intuitively, the incremental error t specified in (5) isolates 
the specific contribution due to the perturbation, which is obviously more relevant 
than the total error which includes a bias £(p) unrelated to the perturbation 1r. 

This bias necessitates stringent zero-mean and orthogonality conditions on the 1C'i 

and requires many perturbation cycles in order to effect a consistent decrease in 
the error [8].1 An additional difference concerns the assumption on the dynamics 
of the perturbations 1C'i. By fixing the perturbation 1r during every epoch in the 
present method, the dynamics of the 1C'i no longer interfere with the time delays of 
the network, and dynamic optimization tasks as (2) come within reach. 

The rather simple and intuitive structure (4) and (5) of the algorithm is somewhat 
reminiscent of related models for reinforcement learning, and likely finds parallels 
in other fields as well. Random direction and line-search error-descent algorithms 
for trajectory learning have been suggested and analyzed by P. Baldi [12]. As a 
matter of coincidence, independent derivations of basically the same algorithm but 
from different approaches are presented in this volume as well [13],[14]. Rather than 
focussing on issues of originality, we proceed by analyzing the virtues and scaling 
properties of this method. We directly present the results below, and defer the 
formal derivations to the appendix. 

2.1 The algorithm performs gradient descent on average, provided that the 
perturbations 1C'i are mutually uncorrelated with uniform auto-variance, 
that is E(1C'i1C'j) = (J'26ij with (J' the perturbation strength. The effective 
gradient descent learning rate corresponding to (3) equals 7Jeff = 1-'(J'2. 

Hence on average the learning trajectory follows the steepest path of error descent. The 
stochasticity of the parameter perturbations gives rise to fluctuations around the mean 
path of descent, injecting diffusion in the learning process. However, the individual fluc­
tuations satisfy the following desirable regularity: 

1 An interesting noise-injection variant on the model-free distributed learning paradigm 
of [8], presented in [10], avoids the bias due to the offset level £(p) as well, by differentiating 
the perturbation and error signals prior to correlating them to construct the parameter 
increments. A complete demonstration of an analog VLSI system based on this approach 
is lJresented in this volume [llJ. As a matter offact, the modified noise-injection algorithm 
corresponds to a continuous-time version of the algorithm presented here , for networks and 
error functionals free of time-varying features. 
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2.2 The error £(p) always decreases under an update (4) for any 1r, provided 
that 11r12 is "small", and J1 is strictly positive and "small". 

Therefore, the algorithm is guaranteed to converge towards local error minima just like 
gradient descent, as long as the perturbation vector 11" statistically explores all directions of 
the parameter space, provided the perturbation strength and learning rate are sufficiently 
small. This property holds only for methods which bypass the bias due to the offset error 
term £(p) for the calculation of the updates, as is performed here by subtraction of the 
offset i'1 (5). 

The guaranteed decrease in error of the update (4) under any small, single instance of 
the perturbation 11" removes the need of averaging multiple trials obtained by different in­
stances of 11" in order to reduce turbulence in the learning dynamics. We intentionally omit 
any smoothing operation on the constructed increments (4) prior to effecting the updates 
~PI' unlike the estimation of the true gradient in [8],[10],[13] by essentially accumulating 
and averaging contributions (4) over a large set of random perturbations. Such averaging 
is unnecessary here (and in [13]) since each individual increment (4) contributes a decrease 
in error, and since the smoothing of the ragged downward trajectory on the error surface 
is effectively performed by the integration of the incremental updates (4) anyway. Fur­
thermore, from a simple analysis it follows that such averaging is actually detrimental to 
the effective speed of convergence. 2 For a correct measure of the convergence speed of the 
algorithm relative to that of other methods, we studied the boundaries of learning sta­
bility regions specifying maximum learning rates for the different methods. The analysis 
reveals the following scaling properties with respect to the size of the trained network, 
characterized by the number of adjustable parameters P: 

2.3 The maximum attainable average speed of the algorithm is a factor pl/2 
slower than that of pure gradient descent, as opposed to the maximum 
average speed of sequential weight perturbation which is a factor P slower 
than gradient descent. 

The reduction in speed of the algorithm vs. gradient descent by the square root of the 
number of parameters can be understood as well from an information-theoretical point 
of view using physical arguments. At each epoch, the stochastic algorithm applies per­
turbations in all P dimensions, injecting information in P different "channels". However, 
only scalar information about the global response of the network to the perturbations is 
available at the outside, through a single "channel". On average, such an algorithm can 
extract knowledge about the response of the network in at most p 1 / 2 effective dimensions, 
where the upper limit is reached only if the perturbations are truly statistically indepen­
dent, exploiting the full channel capacity. In the worst case the algorithm only retains 
scalar information through a single, low-bandwidth channel, which is e.g. the case for 
the sequential weight perturbation algorithm. Hence, the stochastic algorithm achieves a 
speed-up of a factor p 1 / 2 over the technique of sequential weight perturbation, by using 
parallel statistically independent perturbations as opposed to serial single perturbations. 
The original model-free algorithm by Dembo and Kailath [8] does not achieve this p 1 / 2 

2Sure enough, averaging say M instances of (4) for different random perturbations will improve the 
estimate of the gradient by decreasing its variance. However, the variance of the update ~p decreases 
by a factor of M, allowing an increase in learning rate by only a factor of M 1/2, while to that purpose 
M network evaluations are required. In terms of total computation efforts, the averaged method is hence 
a factor A-l1/2 slower . 
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speed-up over the sequential perturbation method (and may even do worse), partly because 
the information about the specific error contribution by the perturbations is contaminated 
due to the constant error bias signal £(p). 

Note that up to here the term "speed" was defined in terms of the number of epochs, 
which does not necessarily directly relate to the physical speed, in terms of the total 
number of operations. An equally important factor in speed is the amount of com­
putation involved per epoch to obtain values for the updates (3) and (4). For the 
stochastic algorithm, the most intensive part of the computation involved at every 
epoch is the evaluation of £(p) for two instances of pin (5), which typically scales 
as O(P) for neural networks. The remaining operations relate to the generation 
of random perturbations 7ri and the calculation of the correlations in (4), scaling 
as O( P) as well. Hence, for an accurate comparison of the learning speed, the 
scaling of the computations involved in a single gradient descent step needs to be 
balanced against the computation effort by the stochastic method corresponding to 
an equivalent error descent rate, which combining both factors scales as O( p 3 / 2 ). 

An example where the scaling for this computation balances in favor of the stochas­
tic error-descent method, due to the expensive calculation of the full gradient, will 
be demonstrated below for dynamic trajectory learning. 

More importantly, the intrinsic parallelism, fault tolerance and computational sim­
plicity of the stochastic algorithm are especially attractive with hardware implemen­
tations in mind. The complexity of the computations can be furthermore reduced 
by picking a binary random distribution for the parallel perturbations, 7ri = ±u 
with equal probability for both polarities, simplifying the multiply operations in 
the parameter updates. In addition, powerful techniques exist to generate large­
scale streams of pseudo-random bits in VLSI [15]. 

3 Numerical Simulations 

For a test of the learning algorithm on time-dependent problems, we selected dy­
namic trajectory learning (a "Figure 8") as a representative example [2]. Several 
exact gradient methods based on an error functional of the form (2) exist [2]-[5k 
with a computational complexity scaling as either O( P) per epoch for an off-line 
method [2] (requiring history storage over the complete time interval of the error 
functional), or as O(p2) [3] and recently as O(p3 / 2) [4]-[5] per epoch for an on-line 
method (with only most current history storage). The stochastic error-descent al­
gorithm provides an on-line alternative with an O( P) per epoch complexity. As a 
consequence, including the extra p 1/ 2 factor for the convergence speed relative to 
gradient descent, the overall computation complexity of the stochastic error-descent 
still scales like the best on-line exact gradient method currently available. 

For the simulations, we compared several runs of the stochastic method with a 
single run of an exact gradient-descent method, all runs starting from the same 
initial conditions. For a meaningful comparison, the equivalent learning rate for 

3The distinction between on-line and off-line methods here refers to issues of time 
rev~rsal in the computation. On-line methods process iucoming data strictly in the order 
it is received, while off-line methods require extensive access to previously processed data. 
On-line methods are therefore more desirable for real-time learning applications. 
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stochastic descent 7]eff = J-U12 was set to 7], resulting in equal average speeds. We 
implemented binary random perturbations 7ri = ±O" with 0" = 1 X 10-3 • We used 
the network topology, the teacher forcing mechanism, the values for the learning 
parameters and the values for the initial conditions from [4], case 4, except for 7] (and 
7]eff) which we reduced from 0.1 to 0.05 to avoid strong instabilities in the stochastic 
sessions. Each epoch represents one complete period of the figure eight. We found 
no loca.l minima for the learning problem, and all sessions converged successfully 
within 4000 epochs as shown in Fig. 1 (a). The occasional upward transitions in 
the stochastic error are caused by temporary instabilities due to the elevated value 
of the learning rate. At lower values of the learning rate, we observed significantly 
less frequent and articulate upward transitions. The measured distribution for the 
decrements in error at 7]eff = 0.01 is given in Fig. 1 (b). The values of the stochastic 
error decrements in the histogram are normalized to the mean of the distribution, 
i. e. the error decrements by gradient descent (8). As expected, the error decreases 
at practically all times with an average rate equal to that of gradient descent, but 
the largest fraction of the updates cause little change in error. 

Figure Eight Trajectory 
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Figure 1 Exact Gradient and Stochastic Error-Descent Methods for the Figure "8" Trajectory. 
(a) Convergence Dynamics (11 = 0.05). (b) Distribution of the Error Decrements.(11 = 0.01). 

4 Conclusion 

5 

The above analysis and examples serve to demonstrate the solid performance of the 
error-descent algorithm, in spite of its simplicity and the minimal requirements on 
explicit knowledge of internal structure. While the functional simplicity and fault­
tolerance of the algorithm is particularly suited for hardware implementations, on 
conventional digital computers its efficiency compares favorably with pure gradient 
descent methods for certain classes of networks and optimization problems, owing 
to the involved effort to obtain full gradient information. The latter is particularly 
true for complex optimization problems, such as for trajectory learning and adaptive 
control, with expensive scaling properties for the calculation of the gradient. In 
particular, the discrete formulation of the learning dynamics, decoupled from the 
dynamics of the network, enables the stochastic error-descent algorithm to handle 
dynamic networks and time-dependent optimization functionals gracefully. 
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Appendix: Formal Analysis 

We analyze the algorithm for small perturbations 1I"i, by expanding (5) into a Taylor series 
around p: 

f = L 88f 11") + 0(111"12) , 
p) 

) 

where the 8f / 8p) represent the components of the true error 
physical structure of the network. Substituting (6) in (4) yields: 

"" 8f 2 tl.Pi = -It ~ 8pj 1I"i1l") + 0(111"1 )1I"i . 
) 

(6) 

gradient, reflecting the 

(7) 

For mutually uncorrelated perturbations 1I"i with uniform variance (1'2, E(1I"i1l") = (1'26i), 
the parameter vector on average changes as 

2 8f 3 
E(tl.p) = -It(1' 8p + 0((1' ) . (8) 

Hence, on average the algorithm performs pure gradient descent as in (3), with an effective 
learning rate 11 = 1'(1'2. The fluctuations of the parameter updates (7) with respect to their 
average (8) give rise to diffusion in the error-descent process. Nevertheless, regardless of 
these fluctuations the error will always decrease under the updates (4), provided that the 
increments tl.Pi are sufficiently small (J.t small): 

"" 8f 2 "" "" 8f 8f "2 tl.f = ~ -8 . tl.Pi + O(Itl.pl ) ~ -It ~ ~ -8 1I"i-8 11") ~ -J.t f ::; 0 . 
. p. . ~ ~ 

(9) . . ) 

Note that this is a direct consequence of the offset bias subtraction in (5), and (9) is no 
longer valid when the compensating reference term f(p) in (5) is omitted. The algorithm 
will converge towards local error minima just like gradient descent, as long as the pertur­
bation vector 11" statistically explores all directions of the parameter space. In principle, 
statistical independence of the 11". is not required to ensure convergence, though in the case 
of cross-correlated perturbations the learning trajectory (7) does not on average follow the 
steepest path (8) towards the optima, resulting in slower learning. 

The constant It cannot be increased arbitrarily to boost the speed of learning. The value 
of J.t is constrained by the allowable range for Itl.pl in (9). The maximum level for Itl.pl 
depends on the steepness and nonlinearity of the error functional f, but is largely inde­
pendent of which algorithm is being used. A value of Itl.pl exceeding the limit will likely 
cause instability in the learning process, just as it would for an exact gradient descent 
method. The constraint on Itl.pl allows us to formulate the maximum attainable speed of 
the stochastic algorithm, relative to that of other methods. From (4), 

ltl.pl2 = J.t 2111"12f2 ::::::: p1'2(1'2f2 (10) 

where P is the number of parameters. The approximate equality at the end of (10) holds 
for large P, and results from the central limit theorem for 111"12 with E( 1I"i1l") = (1'2 h.) . 
From (6), the expected value of (10) is 

E(I~pI2) = P (p0'2)21 ~! 12 . (11) 

The maximum attainable value for I' can be expressed in terms of the maximum value of 
11 for gradient descent learning. Indeed, from a worst-case analysis of (3) 

1 1
2 

2 2 8f 
Itl.plmax = l1max a 

p max 
(12) 
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and from a similar worst-case analysis of (11). we obtain P IJma.x /7 2 "" 71ma.x to a first order 
approximation. With the derived value for J.tma.x, the maximum effective learning rate 1/eff 

associated with the mean field equation (8) becomes 71eff = p- 1 / 2 71ma.x for the stochastic 
method, as opposed to 1/ma.x for the exact gradient method. This implies that on average 
and under optimal conditions the learning process for the stochastic error descent method 
is a factor pl/2 slower than optimal gradient descent. From similar arguments, it can be 
shown that for sequential perturbations lI'j the effective learning rate for the mean field 
gradient descent satisfies 71eff = p-l 71ma.x. Hence under optimal conditions the sequential 
weight perturbation technique is a factor P slower than optimal gradient descent. 
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