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ABSTRACT 

In a multi-layered neural network, anyone of the hidden layers can be 
viewed as computing a distributed representation of the input. Several 
"encoder" experiments have shown that when the representation space is 
small it can be fully used. But computing with such a representation 
requires completely dependable nodes. In the case where the hidden 
nodes are noisy and unreliable, we find that error correcting schemes 
emerge simply by using noisy units during training; random errors in­
jected during backpropagation result in spreading representations apart. 
Average and minimum distances increase with misfire probability, as 
predicted by coding-theoretic considerations. Furthennore, the effect of 
this noise is to protect the machine against permanent node failure, 
thereby potentially extending the useful lifetime of the machine. 

1 INTRODUCTION 

The encoder task described by Ackley, Hinton, and Sejnowski (1985) for the Boltzmann 
machine, and by Rumelhart, Hinton, and Williams (1986) for feed-forward networks. has 
been used as one of several standard benchmarks in the neural network literature. 
Cottrell, Munro, and Zipser (1987) demonstrated the potential of such autoencoding archi­
tectures to lossy compression of image data. In the encoder architecture, the weights con­
necting the input layer to the hidden layer play the role of an encoding mechanism. and 
the hidden-output weights are analogous to a decoding device. In the terminology of 
Shannon and Weaver (1949), the hidden layer corresponds to the communication channel. 
By analogy, channel noise corresponds to a fault (misfiring) in the hidden layer. Previous 
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encoder studies have shown that the representations in the hidden layer correspond to opti­
mally efficient (i.e., fully compressed) codes, which suggests that introducing noise in 
the fonn of random interference with hidden unit function may lead to the development of 
codes more robust to noise of the kind that prevailed during learning. Many of these 
ideas also appear in Chiueh and Goodman (1987) and Sequin and Clay (1990). 

We have tested this conjecture empirically, and analyzed the resulting solutions, using a 
standard gradient-descent procedure (backpropagation). Although there are alternative tech­
niques to encourage fault tolerance through construction of specialized error functions 
(eg., Chauvin, 1989) or direct attacks (eg., Neti, Schneider, and Young, 1990), we have 
used a minimalist approach that simply introduces intennittent node misfirings during 
training that mimic the errors anticipated during nonnal performance. 

In traditional approaches to developing error-correcting codes (eg., Hamming, 1980), each 
symbol from a source alphabet is mapped to a codeword (a sequence of symbols from a 
code alphabet); the distance between codewords is directly related to the code's robustness. 

2 METHODOLOGY 

Computer simulations were performed using strictly layered feed forward networks. The 
nodes of one of the hidden layers randomly misfrre during training; in most experiments, 
this "channel" layer was the sole hidden layer. Each input node corresponds to a transmit­
ted symbol, output nodes to received symbols, channel representations to codewords; 
other layers are introduced as needed to enable nonlinear encoding and/or decoding. After 
training, the networks were analyzed under various conditions, in terms of performance 
and coding-theoretic measures, such as Hamming distance between codewords. 

The response, r, of each unit in the channel layer is computed by passing the weighted 
sum, x , through the hyperbolic tangent (a sigmoid that ranges from -1 to +1). The re­
sponses of those units randomly designated to misfire are then multiplied by -1 as this is 
most comparable with concepts from coding theory for binary channels" The misfire op­
eration influences the course of learning in two ways, since the erroneous information is 
both passed on to units further "downstream" in the net, and used as the presynaptic factor 
in the synaptic modification rule. Note that the derivative factor in the backpropagation 
procedure is unaffected for units using the hyperbolic k'Ulgent, since dr/dx = (l+r )(l-r )/2. 

These misfrrings were random I y assigned according to various kinds of probability distri­
butions: independent identically distributed (i.i.d), k~f-n, correlated across hidden units, 
and correlated over the input distribution. The hidden unit representations required to h,m­
die uncorrelated noise roughly correspond to Hamming spheres2 ,and can be decoded by a 

1 Other possible misfire modes include setting the node's activity to zero (or some other 
constant) or randomizing it. The most appropriate mode depends on various factors, in­
eluding the situation to be simulated and the type of analysis to be performed. For exam­
pIe, simulating neuronal death in a biological situation may warrant a different failure 
mode than simulating failure of an electronic component. 

2 Consider an n-bit block code, where each codeword lies on the vertex of an n-cube. The 
Hamming sphere of radius k is the neighborhood of vertices that differ from the codeword 
by a number of bits less than or equal to k. 
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single layer of weights; thus the entire network consists of just three sets of units: 
source-channel-sink. However, correlated noise generally necessitates additional layers. 

All the experiments described below use the encoder task described by Ackley, Hinton, 
and Sejnowki (1986); that is, the input pattern consists of just one unit active and the 
others inactive. The task is to activate only the corresponding unit in the output layer. 
By comparison with coding theory, the input units are thus analogous to symbols to be 
encoded, and the hidden unit representations are analogous to the code words. 

3 RESULTS 

3.1. PERFORMANCE 

The ftrst experiment supports the claim of Sequin and Clay (1990) that training with 
faults improves network robustness. Four 8-30-8 encoders were trained with fault proba­
bility p = 0, 0.05, 0.1, and 0.3 respectively. After training, each network was tested with 
fault probabilities varying from 0.05 to 1.0. The results show enhanced performance for 
networks trained with a higher rate of hidden unit misftring. Figure 1 shows four perfor­
mance curves (one for each training fault probability), each as a function of test fault 
probability. 

Interesting convergence properties were also observed; as the training fault probabilty, p, 
was varied from 0 to 0.4, networks converge reliably faster for low nonzero values 
(0.05<p<0.15) than they do at p=O. 
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Figure 1. Performance for various training conditions. Four 8-30-8 encoders were 
trained with different probabilities for hidden unit misfiring. Each data point is an 
average over 1000 random stimuli with random hidden unit faults. Outputs are 
scored correct if the most active output node corresponds to the active input node. 
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3.2. DISTANCE 

3.2.1 Distances increase with fault probability 

Distances were measured between all pairs of hidden unit representations. Several net­
works trained with different fault probabilities and various numbers of hidden units were 
examined. As expected, both the minimum distances and average distances increase with 
the training fault probability until it approaches 0.5 per node (see Figure 2). For proba­
bilities above 0.25, the minimum distances fall within the theoretical bounds for a 30 bit 
code of a 16 symbol alphabet given by Gilbert and Elias (see Blahut, 1987). 
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Figure 2. Distance increases with fault probability. Average and minimum L1 
distances are plotted for 16-30-16 networks trained with fault probabilities 
ranging from 0.0 to 0.4. Each data point represents an average over 100 
networks trained using different weight initializations. 

3.2.2. Input probabilities affect distance 

The probability distribution over the inputs influences the relative distances of the repre­
sentations at the hidden unit level. To illustrate this, a 4-10-4 encoder was trained using 
various probabilities for one of the four inputs (denoted P*), distributing the remaining 
probabilty unifonnly among the other three. The average distance between the representa­
tion of p* and the others increases with its probability, while the average distmlce among 
the other three decreases as shown in the upper part of Figure 3. The more frequent pat­
terns are generally expected to "claim" a larger region of representation space. 
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Figure 3. Non-uniform input distribution. 4-10-4 encoders were trained usingfailure 
probabilities of 0 (squares), 0.1 (circles), and 0.2 (triangles) . The input distribution was 
skewed by varying the probability of one of the four items (denoted P*) in the training set 
from 0.05 to 0.5, keeping the other probabilities uniform. Average L1 distances are 
shown from the manipulated pattern to the other three (open symbols) and among the 
equiprobables (filled symbols) as well. In the upper figure, failure is independent of the 
input, while in the lower figure , failure is induced only when P* is presented . 
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The dashed line in Figure 3 indicates a uniform input distribution, hence in the top fig­
ure, the average distance to p* is equal to the average distances among the other patterns. 
However this does not hold in the lower figure, indicating that the representations of 
stimuli that induce more frequent channel errors also claim more representation space. 

3.3. CORRELATED MISFIRING 

If the error probability for each bit in a message (or each hiddoo unit in a network layer) 
is uncorrelated with the other message bits (hidden units), then the principles of distance 
between codewords (representations) applies. On the other hand, if there is some structure 
to the noise (i.e. the misfrrings are correlated across the hidden units), there may be differ­
ent strategies to encoding and decoding, that require computations other than simple dis­
tance. While a Hamming distance criterion on a hypercube is a linearly separable classifi­
cation function, and hence computable by a single layer of weights, the more general case 
is not linearly separable, as is demonstrated below. 

Example: Misfiring in 2 of 6 channel units. 
In this example, up to two of six channel units are randomly selected to misfire with each 
learning trial. In order to guarantee full recovery from two simultaneous faults, only two 
symbols can be represented, if the faults are independent; however, if one fault is always 
in one three-unit subset and the other is always in the complementary subset, it is possi­
ble to store four patterns. The following code can be considered with no loss of generali­
ty: Let the six hidden units (code bits) be partitioned into two sets of three, where there is 
at most one fault in each subset. The four code words, 000000, 000111, 111000, 
111111 form an error correcting code under this condition; i.e. each subset is a triplicate 
code. Under the allowed fault combinations specified above, any given transmitted code 
string will be converted by noise to one of 9 strings of the 15 that lie at a Hamming dis­
tance of 2 (the 15 unconstrained two-bit errors of the string 000000 are shown in the 
table below with the 9 that satisfy the constraint in a box). Because of the symmetric 
distribution of these 9 allowed states, any category that includes all of them and is defined 
by a linear (hyperplane) boundary, must include all 15. Thus, this code cannot be decoded 
by a single layer of threshold (or sigmoidal) units; hence even if a 4-6-4 network discov­
ers this code, it will not decode it accurately. However, our experiments show that in­
serting a reliable (fault-free) hidden layer of just two units between the channel layer and 
the output layer (i.e., a 4-6-2-4 encoder) enables the discovery of a code that is robust to 
errors of this kind. The representations of the four patterns in the channel layer show a 
triply redundant code in each half of the channel layer (Figure 4). The 2-unit layer pro­
vides a transformation that allows successful decoding of channel representations with 
faults. 

Table. Possible two-bit error masks 

000011 
000101 000110 
001001 001010 
010001 010010 
100001 100010 

001100 
010100 011000 
100100 101000 

'---------------------------
110000 
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Input Channel Decoder Output 

Figure 4. Sample solution to 3-3 channel task. Thresholded activation 
patterns are shown for a 4-6-2-4 network. Errors are introduced into the first 
hidden (channel) layer only. With each iteration, the outputs of one hidden 
unit from the left half of the hidden layer and one unit from the right half can be 
inverted. Note that the channel develops a triplicate code for each half-layer. 

4 DISCUSSION 

Results indicate that vanilla backpropagation on its own does not spread out the hidden 
unit representations (codewords) optimally, and that deliberate random misfiring during 
training induces wider separations, increasing resistance to node misfiring. Furthermore, 
non-uniform input distributions and non-uniform channel properties lead to asymmetries 
among the similarity relationships between hidden unit representations that are consistent 
with optimizing mutual information. 

A mechanism of this kind may be useful for increasing fault tolerance in electronic sys­
terns, and may be used in neurobiological systems. The potential usefulness of inducing 
faults during training extends beyond fault tolerance. Clay and Sequin (1992) point out 
that training of this kind can enhance the capacity of a network to generalize. In effect, 
the probability of random faults can be used to vary the number of "effective parameters" 
(a term coined by Moody, 1992) available for adaptation, without dynamically altering 
network architecture. Thus, a naive system might begin with a relatively high probabili­
ty of misfiring, and gradually reduce it as storage capacity needs increase with experience. 

This technique may be particularly valuable for designing efficient, robust codes for chan­
nels with high order statistical properties, which defy traditional coding techniques. In 
such cases, a single layer of weights for encoding is not generally sufficient, as was 
shown above in the 4-6-2-4 example. Additional layers may enhance code efficiency for 
complex noiseless applications, such as image compression (Cottrell, Munro, and Zipser, 
1987). 
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