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Abstract 

Representations for semantic information about words are neces­
sary for many applications of neural networks in natural language 
processing. This paper describes an efficient, corpus-based method 
for inducing distributed semantic representations for a large num­
ber of words (50,000) from lexical coccurrence statistics by means 
of a large-scale linear regression. The representations are success­
fully applied to word sense disambiguation using a nearest neighbor 
method . 

1 Introduction 

Many tasks in natural language processing require access to semantic information 
about lexical items and text segments. For example, a system processing the sound 
sequence: /rE.k~maisbi:tJ/ needs to know the topic of the discourse in order to decide 
which of the plausible hypotheses for analysis is the right one: e.g. "wreck a nice 
beach" or "recognize speech" . Similarly, a mail filtering program has to know the 
topical significance of words to do its job properly. 

Traditional semantic representations are ill-suited for artificial neural networks since 
they presume a varying number of elements in representations for different words 
which is incompatible with a fixed input window. Their localist nature also poses 
problems because semantic similarity (for example between dog and cat) may be 
hidden in inheritance hierarchies and complicated feature structures. Neural net­
works perform best when similarity of targets corresponds to similarity of inputs; 
traditional symbolic representations do not have this property. Microfeatures have 
been widely used to overcome these problems. However, microfeature representa-
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tions have to be encoded by hand and don't scale up to large vocabularies. 

This paper presents an efficient method for deriving vector representations for words 
from lexical cooccurrence counts in a large text corpus. Proximity of vectors in the 
space (measured by the normalized correlation coefficient) corresponds to semantic 
similarity. Lexical coocurrence can be easily measured. However, for a vocabulary 
of 50,000 words, there are 2,500,000,000 possible coo currence counts to keep track 
of. While many of these are zero, the number of non-zero counts is still huge. On 
the other hand , in any document collection most of these counts are small and 
therefore unreliable. Therefore, letter fourgrams are used here to bootstrap the 
representations. Cooccurrence statistics are collected for 5,000 selected fourgrams. 
Since each of the 5000 fourgrams is frequent, counts are more reliable than cooc­
currence counts for rare words. The 5000-by-5000 matrix used for this purpose is 
manageable. A vector for a lexical item is computed as the sum of fourgram vectors 
that occur close to it in the text . This process of confusion yields representations 
of words that are fine-grained enough to reflect semantic differences between the 
various case and inflectional forms a word may have in the corpus. 

The paper is organized as follows. Section 2 discusses related work. Section 3 
describes the derivation of the vector representations . Section 4 performs an eval­
uation. The final section concludes. 

2 Related Work 

Two kinds of semantic representations commonly used in connectionism are micro­
features (e.g . \Valtz and Pollack 1985, McClelland and Kawamoto 1986) and local­
ist schemes in which there is a separate node for each word (e.g . Cottrell 1989). 
Neither approach scales up well enough in its original form to be applicable to large 
vocabularies and a wide variety of topics. Gallant (1991), Gallant et a1. (1992) 
present a less labor-intensive method based on microfeatures, but the features for 
core stems still have to be encoded by hand for each new document collection. The 
derivation of the Word Space presented here is fully automatic. It also uses fea­
ture vectors to represent words, but the features cannot be interpreted on their 
own. Vector similarity is the only information present in Word Space: semantically 
related words are close, unrelated words are distant. The emphasis on seman­
tic similarity rather than decomposition into interpretable features is similar to 
Kawamoto (1988) . Scholtes (1991) uses a two-dimensional Kohonen map to rep­
resent semantic similarity. While a Kohonen map can deal with non-linea.rities 
(in contrast to the singular value decomposition used below), a space of much 
higher dimensionality is likely to capture more of the complexity of semantic re­
latedness present in natural language. Scholtes ' idea to use n-gl'ams to reduce 
the number of initial features for the semantic representations is extended here by 
looking at n-gram (oocurrence statistics rather than occurrence in documents (cf. 
(Kimbrell 1988) for the use of n-grams in information retrieval). 

An important goal of many schemes of semantic represent.ation is to find a limited 
number of semantic classes (e.g . classical thesauri such as Roget's , Crouch 1990, 
Brown et a1. 1990). Instead, a multidimensional space is constructed here, in which 
each word has its own individual representation. Any clustering into classes intro­
duces artificial boundaries that cut off words from part of their semantic neighbol'-
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governor quits knights of columbus over bishop's abortion gag rule 
GOVE _QUI NIGH OLUM SHOP ABOR RUL 

VERN QUIT HTS LUMB HOP BORT RULE 
ERNO ORTI ULE_ 

RNOR RTIO 

Figure 1: A line from the New York Times with selected fourgrams. 

hood. In large classes, there will be members "from opposite sides of the class" that 
are only distantly related. So any class size is problematic, since words are either 
separated from close neighbors or lumped together with distant terms. Conversely, 
a multidimensional space does not make such an arbitrary classification necessary. 

3 Derivation of the Vector Representations 

Fourgram selection. There are about. 600,000 possible fourgrams if the empty 
space, numbers and non-alphanumeric characters are included as "special letters" . 
Of these, 95,000 occurred in 5 months of the New York Times. They were reduced 
to 5000 by first deleting all rare ones (frequency less than 1000) and then redundant 
and uninformative fourgrams as described below. 

If there is a group of fourgrams tha.t occurs in only one word, all but. one is delet.ed. 
For instance, the fourgrams BAGH, AGHD, GHDA, HDAD tend to occur together in 
Baghdad, so three of them will be deleted. The rationale for this move is that 
cooccurrence information about one of the fourgrams can be fully derived from 
each of the others, so that an index in the matrix would be wasted if more than 
one of them was included. The relative frequency of one fourgram occurring after 
another was calculated with fivegrams. For instance, the relative frequency of AGHD 

following BAGH is the frequency of the fivegram BAGHD divided by the frequency of 
the fourgram BAGH. 

Most fourgrams occur predominantly in three or four stems or words. U ninfor­
mative fourgrams are sequences such as RET! or TION that are part of so many 
different words (resigned, residents, retirements, resisted, . .. ; abortion, despera­
tion, construction, detention, ... ) that knowledge about coocurrence with them 
carries almost no semantic information. Such fourgrams are therefore useless and 
are deleted. Again, fivegrams were used to identify fourgrams that occurred fre­
quently in many stems. 

A set of 6290 fourgrams remained after these deletions. To reduce it to the required 
size of 5000, t.he most frequent 300 and the least frequent. 990 were also delet.ed. 
Figure 1 shows a line from the New York Times and which of the 5000 selecteo 
fourgrams occurred in it. 

Computation of fourgram vectors. The computation of word vectors de­
scribed below depends on fourgram vectors that accurately reflect semantic sim­
ilarity in the sense of being used to describe the same contents. Consequently, one 
needs to be able to compare the sets of contexts two fourgrams occur in. For this 
purpose, a collocation matrix for fourgrams was collected such that the entry ai,j 
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counts the number of times that fourgram i occurs at most 200 fourgrams to the 
left of fourgram j. Two columns in this matrix are similar if the contexts the corre­
sponding fourgrams are used in are similar. The counts were determined using five 
months of the New York Times (June - October 1990). The resulting collocation 
matrix is dense: only 2% of entries are zeros, because almost any two fourgrams 
cooccur. Only 10% of entries are smaller than 10, so that culling small counts 
would not increase the sparseness of the matrix. Consequently, any computation 
that employs the fourgram vectors directly would be inefficient. For this reason, a 
singular value decomposition was performed and 97 singular values extracted (cf. 
Deerwester et al. 1990) using an algorithm from SVDPACK (Berry 1992). Each 
fourgram can then be represented by a vector of 97 real values. Since the singular 
value decomposition finds the best least-square approximation of the original space 
in 97 dimensions, two fourgram vectors will be similar if their original vectors in 
the collocation matrix are similar. The reduced fourgram vectors can be efficiently 
used for confusion as described in the following section. 

Computation of word vectors. We can think of fourgrams as highly ambiguous 
terms. Therefore, they are inadequate if used directly as input to a neural net. We 
have to get back from fourgrams to words. For the experiment reported here, 
cooccurrence information was used for a second time to achieve this goal: in this 
case coo currence of a target word with any of the 5000 fourgrams. For each of 
the selected words (see below), a context vector was computed for every position 
at which it occurred in the text. A context vector was defined as the sum of all 
defined fourgram vectors in a window of 1001 fourgrams centered around the target 
word. The context vectors were then normalized and summed. This sum of vectors 
is the vector representation of the target word. It is the confusion of all its uses 
in the corpus. More formally, if C( w) is the set of positions in the corpus at which 
w occurs and if 'P(f) is the vector representation for fourgram f, then the vector 
representation r( w) of w is defined as: (the dot stands for normalization) 

• 
r(w) = L ( L 'P(f)) 

i€C(w) J close to i 

The treatment of words is case-sensitive. The following terminology will be used: 
a surface form is the string of characters as it occurs in the text; a lemma is either 
lower case or upper case: all letters are lower case with the possible exception of 
the first; word is used as a case-insensitive term. So every word has exactly two 
lemmas. A lemma of length n has up to 2n surface forms. Almost every lower case 
lemma can be realized as an upper case surface form. But upper case lemmas are 
hardly ever realized as lower case surface forms. 

The confusion vectors were computed for all 54366 lemmas that occurred at least 
10 times in 18 months of the New York Times News Service (May 1989 - October 
1990, about 50 million words). Table 1 lists the percentage of lower case and upper 
case lemmas, and the distribution of lemmas with respect to words. 
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lemmas number percent 
words number percent 

lower case lemma only 23766 52 0 
lower ca.se 32549 60 0 

21817 40% upper case lemma only 13034 29% upper case 
both lemmas 8783 19% 

total 54366 100 0 total 45583 100 0 

Table 1: The distribution of lower and upper case in words and lemmas. 

word I nearest neighbors 

burglar burglars thief rob mugging stray robbing lookout chase C) ate thieves 
disable deter intercept repel halting surveillance shield maneuvers 
disenchantment disenchanted sentiment resentment grudging mindful unenthusiastic 
domestically domestic auto/-s importers/-ed threefold inventories drastically cars 
Dour melodies/-dic Jazzie danceable reggae synthesizers Soul funk tunes 
grunts heap into ragged goose neatly pulls buzzing rake odd rough 
kid dad kidding mom ok buddies Mom Oh Hey hey mama 
S.O.B. Confessions Jill Julie biography Judith Novak Lois Learned Pulitzer 
Ste. dry oyster whisky hot filling rolls lean float bottle ice 
workforce jobs employ /-s/-ed/-ing attrition workers clerical labor hourly 
keepmg .. I hopmg brmg wlpmg could some would other here rest have 

Table 2: Ten random and one selected word and their nearest neighbors. 

4 Evaluation 

Table 2 shows a random sample of 10 words and their ten nearest neighbors in Word 
Space (or less depending on how many would fit in the table). The neighbors are 
listed in order of proximity to the head word. burglar, disenchantment, kid, and 
workforce are closely related to almost all of their nearest neighbors. The same is 
true for disable, dom esticaUy, and Dour, if we regard as the goal to come up with 
a characterization of semantic similarity in a corpus (as opposed to the language 
in general). In the New York Times, the military use of disable dominates, Iraq's 
military, oil pipelines and ships are disabled. Similarly, domestic usually refers to 
the domestic market, and only one person named Dour occurs in the newspaper: the 
Senegalese jazz musician Youssou N'Dour. So these three cases can also be counted 
as successes. The topic/ content of grunts is moderately well characterized by other 
objects like goose and rake that one would also expect on a farm. Finally, little 
useful information can be extracted for S. D.B. and Ste. S. D.B. mainly occurs in 
articles about. the bestseller "Confessions of an S.O.B." Since it is not. used literally, 
its semantics don't come out very well. The neighbors of Ste are for the most part 
words associated with water, because the name of the river "Ste.-Marguerite" in 
Quebec (popular for salmon fishing) is the most frequent context for Ste. Since 
the significance of Ste depends heavily on the name it occurs in, its usefulness a.s a. 
contributor of semantic informa.tion is limited, so its poor characterization should 
probably not be seen as problematic. The word keeping has been added to the table 
to show that the vector representations of words that can be used in a wide variety 
of contexts are not. interesting. 

Table 3 shows that it is important for many words to make a distinction between 
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word 

pinch (.41) 
Pinch 
kappa (.49) 
Kappa 
roe (.54) 
Roe 
completion (.73) 
completions 
ok (.60) 
oks 
triad (.52) 
triads 

nearest neighbors 
outs pitch Cone hitting Cary strikeout Whitehurst Teufel Dykstra mound 
unsalted grated cloves pepper teaspoons coarsely parsley Combine cumin 
casein protein/-s synthesize liposomes recombinant enzymes amino dna 
Phi Wesleyan graduate cum dean graduating nyu Amherst College Yale 
cod squid fish salmon flounder lobster haddock lobsters crab chilled 
Wade v overturn/-ing uphold/-ing abortion Reproductive overrule 
complete/-~/-s/-ing complex phase/-s uncompleted incomplete 
touchdown/-s interception/-s td yardage yarder tds fumble sacked 
d me I m wouldn t crazy you ain anymore 
approve/-s/-d/-ing Senate Waxman bill appropriations omnibus 
warhea~/-s ballistic missile[-s ss bombers intercontinental silos 
Triads Organized Interpol Cosa Crips gangs trafficking smuggling 

Table 3: Words for which case or inflection matter. 

word I senses % correct 
2 3 sum 

cap ita ljs goodsLseat of government 96 92 95 
interestjs special attention/financial 94 92 93 
motionjs movement/proposal 92 91 92 
plantjs factory /living being 94 88 92 
"uling decision/to exert control 90 91 90 
space area, volume/outer space 89 90 90 
suitjs legal action/garments 94 95 95 
tankjs combat vehicle/receptacle 97 85 95 
trainjs railroad cars/to teach 94 69 89 
vesse1js ship/blood vessel/hollow utensil 93 91 86 92 

Table 4: Ten disambiguation experiments using the vector representations. 

lower case and upper case and between different inflections. The normalized cor­
relation coefficient between the two case/inflectional forms of the word is indicated 
in each example. 

Word sense disambiguation. Word sense disambiguation is a task that many 
semantic phenomena bear on and therefore well suited to evaluate the quality of 
semantic representations. One can use the vector representations for disambigua­
tion in the following way. The context vector of the occurrence of an ambiguous 
word is defined as the sum of all word vectors ocurring in a window around it . 
The set of context vectors of the word in the training set can be clustered. The 
clustering programs used were AutoClass (Cheeseman et al. 1988) and Buckshot 
(Cutting et al. 1992). The clusters found (between 2 and 13) were assigned senses 
by inspecting a few of its members (10-20) . An occurrence of an ambiguous word 
in the test set was then disambiguated by assigning the sense of the training cluster 
that was closest to its context vector. Note that this method is unsupervised in 
that the structure of the "sense space" is analyzed automatically by clustering. See 
Schiitze (1992) for a more detailed description . 

Table 4 lists the results for ten disambiguation experiments that were performed 
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using the above algorithm. Each line shows the ambiguous words, its major senses 
and the success rate of disambiguation for the individual senses and all major senses 
together. Training and test sets were taken from the New York Times newswire 
and were disjoint for each word. These disambiguation results are among the best 
reported in the literature (e.g. Yarowsky 1992). Apparently, the vector representa­
tions respect fine sense distinctions. 

An interesting question is to what degree the vector representations are distributed. 
Using the algorithm for disambiguation described above, a set of contexts of suit 
was clustered and applied to a test text. When the first 30 dimensions were used 
for clustering the training set, the error rate was 9% in the test set. \\Then only the 
odd dimensions were used (1,3,5, ... ,27,29) the error was 14%. With only the even 
dimensions (2,4,6, ... ,28,30), 13% of occurrences in the test set were misclassified. 
This graceful degradation indicates that the vector representations are distributed. 

5 Discussion and Conclusion 

The linear dimensionality reduction performed here could be a useful preprocessing 
step for other applications as well . Each of the fourgram features carries a small 
amount of information. Neglecting individual features degrades performance, but 
there are so many that they cannot be used directly as input to a neural network. 
The word sense disambiguation results suggest that no information is lost when 
only axes of variations extracted by the singular value decomposition are considered 
instead of the original 5000-dimensional fourgram vectors. Schiitze (Forthcoming) 
uses the same methodology for the derivation of syntactic representations for words 
(so that verbs and nouns occupy different regions in syntactic word space). Problems 
in pattern recognition often have the same characteristics: uniform distribution of 
information over all input features or pixels and a high-dimensional input space 
that causes problems in training if the features are used directly. A singular value 
decomposition could be a useful preprocessing step for data of this nature that 
makes neural nets applicable to high-dimensional problems for which training would 
otherwise be slow if possible at all. 

This paper presents Word Space, a new approach to representing semantic infor­
mation about words derived from lexical cooccurrence statistics. In contrast to 
microfeature representations, these semantic representations can be summed for a 
given context to compute a representation of the topic of a text segment. It was 
shown that semantically related words are close in Word Space and that the vec­
tor representations can be used for word sense disambiguation. Word Space could 
therefore be a promising input representation for applications of neural nets in natu­
rallanguage processing such as information filtering or language modeling in speech 
recognition. 
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