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Abstract 

The feed-forward networks with fixed hidden units (FllU-networks) 
are compared against the category of remaining feed-forward net­
works with variable hidden units (VHU-networks). Two broad 
classes of tasks on a finite domain X C R n are considered: ap­
proximation of every function from an open subset of functions on 
X and representation of every dichotomy of X. For the first task 
it is found that both network categories require the same minimal 
number of synaptic weights. For the second task and X in gen­
eral position it is shown that VHU-networks with threshold logic 
hidden units can have approximately lin times fewer hidden units 
than any FHU-network must have. 

1 Introduction 

A good candidate artificial neural network for short term memory needs to be: (i) 
easy to train, (ii) able to support a broad range of tasks in a domain of interest and 
(iii) simple to implement. The class of feed-forward networks with fixed hidden 
units (HU) and adjustable synaptic weights at the top layer only (shortly: FHU­
networks) is an obvious candidate to consider in this context. This class covers a 
wide range of networks considered in the past, including the classical perceptron, 
higher order networks and non-linear associative mapping. Also a number of train­
ing algorithms were specifically devoted to this category (e.g. perceptron, madaline 
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or pseudoinverse) and a number of hardware solutions were investigated for their 
implementation (e.g. optical devices [8]). 

Leaving aside the non-trivial tasks of constructing the domain specific HU for a 
FHU-network [9] and then optimal loading of specific tasks, in this paper we con­
centrate on assessing the abilities of such structures to support a wide range of tasks 
in comparison to more complex feedforward networks with multiple layers of variable 
HU (VHU-networks). More precisely, on a finite domain X two benchmark tests 
are considered: approximation of every function from an open subset of functions 
on X and representation of every dichotomy of X. Some necessary and sufficient 
estimates of minimal necessary numbers of adaptable synaptic weights and of HU 
are obtained and then combined with some sufficient estimates in [10] to provide 
the final results. In Appendix we present an outline some of our recent results on 
the extension of the classical Function-Counting Theorem [2] to the multilayer case 
and discuss some of its implications to assessing network capacities. 

2 Statement of the main results 

In this paper X will denote a subset of R n of N points. Of interest to us are 
multilayer feed-forward networks (shortly FF-networks) , Fw : X - R, depending 
on the k-tuple w = (Wl' ... , Wk) E R k of adjustable synaptic weights to be selected on 
loading to the network desired tasks. The FF -networks are split into two categories 
defined above: 

• FHU-network with fixed hidden units ¢>i : X -+ R 

k 

Fw(x) def I: Wi¢>i(X) (x EX), 
i=l 

(1) 

• VHU-networks with variable hidden units 1/Jw",i : X - R depending on 
some adjustable synaptic weights w", where w = (Wi, w") E R k ' x R k " = 
Rk 

k' 

Fw(x) def I: w~1/Jw",i(X) (x EX). (2) 
i=l 

Of special interest are situations where hidden units are built from one or more layers 
of artificial neurons, which, for simplicity, can be thought of as devices computing 
simple functions of the form 

(Yl, .. ·,Ym) E R m ~ a(wi1Yl + Wi 2 Y2 + ... + Wim.Ym), 

where a : R - R is a non-decreasing squashing function. Two particular examples 
of squashing functions are (i) infinitely differentiable sigmoid function t ~ (1 + 
exp( _t))-l and (ii) the step function 9(t) defined as 1 for t ~ 0 a.nd = 0, otherwise. 
In the latter case the artificial neuron is called a threshold logic neuron (ThL­
neuron). 

In the formulation of results below all biases are treated as synaptic weights attached 
to links from special constant HUs (= 1). 
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2.1 Function approximation 

The space R X of all real functions on X has the natural structure of a vector space 

isomorphic with RN. We introduce the euclidean norm IIIII def CE:CEX 12(x))1/2 

on R X and denote by U C R X an open, non-empty subset. We say that the FF­
network Fw can approximate a function I on X with accuracy f > 0 if II! - Fw II < € 

for a weight vector w ERie. 

Theorem 1 Assume the FF-network Fw is continuously differentiable with respect 
to the adjustable synaptic weights w ERie and k < N. If it can approximate 
any function in U with any accuracy then for almost every function lEU, if 
lilTli-+oo IIFw(i) - III = 0, where w(l), w(2), ... ERie, then lilTli-+oo Ilw(i)11 = 00. 

In the above theorem "almost every" means with the exception of a subset of the 
Lebesgue measure 0 on R X ~ RN. The proof of this theorem relies on use of 
Sard's theorem from differential topology (c.f. Section 3). Note that the above the­
orem is applicable in particular to the popular "back-propagation" network which 
is typically built from artificial neurons with the continuously differentiable sigmoid 
squashing function. 

The proof of the following theorem uses a different approach, since the network is 
not differentiably dependent on its synaptic weights to HUs. This theorem applies 
in particular to the classical FF -networks built from ThL-neurons. 

Theorem 2 A FF-network Fw must have 2:: N HU in the top hidden layer if all 
units of this layer have a finite number of activation levels and the network can 
approximate any function in U with any accuracy. 

The above theorems mean in particular that if we want to achieve an arbitrarily good 

approximation of any function in U def {I : X - R; I/(x)1 < A}, where A > 0, 
and we can use one of VHU-networks of the above type with synaptic weights of a 
restricted magnitude only, then we have to have at least N such weights. However 
that many weights are necessary and sufficient to achieve the same, with a FHU­
network (1) if the functions ¢i are linearly independent on X. So variable hidden 
units give no advantage in this case. 

2.2 Implementation of dichotomy 

We say that the FF-network Fw can implement a dichotomy (X_, X+) of X if 
there exists w ERie such that Fw < 0 on X_ and Fw > 0 on X+. 

Proposition 3 A FHU-network Fw can implement every dichotomy of X if and 
only if it can exactly compute every function on X . In such a case it must have 
2:: N HU in the top hidden layer. 

The non-trivial part of the above theorem is necessity in the first part of it, i.e. that 
being able to implement every dichotomy on X requires N (fixed) hidden units. In 
Section 3.3 we obtain this proposition from a stronger result. Note that the above 
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proposition can be deduced from the classical Function-Counting Theorem [2] and 
also that an equivalent result is proved directly in [3, Theorem 7.2]. 

We say that the points of a subdomain X C Rn are in general position if every 
in R n contains no more than n points of X. Note that points of every finite 
sub domain of R n are in general position after a sufficiently small perturbation and 
that the property of being in general position is preserved under sufficiently small 
perturbations. Note also that the points of a typical N-point sub domain X C R n 

are in general position, where "typical" means with the exception of subdomains X 
corresponding to a certain subset of Lebesgue measure 0 in the space (Rn)N of all 
N -tuples of points from Rn. 

It is proved in [10] that for a subdomain set X C R n of N points in general position 
a VHU-network having i(N - 1)/nl (adjustable) ThL-neurons in the first (and the 
only) hidden layer can implement every dichotomy of X, where the notation itl 
denotes the smallest integer ~ t. Furthermore, examples are given showing that the 
above bound is tight. (Note that this paper corrects and gives rigorous proofs of 
some early results in [I, Lemma 1 and Theorem 1] and also improves [6, Theorem 4].) 
Combining these results with Proposition 3 we get the following result. 

Theorem 4 Assume that all N points of X C R n are in general position. In the 
class of all FF-networks which can implement every dichotomy on X there exists a 
VHU-network with threshold logic HU having a fraction l/n+O(1/ N) of the number 
of the HU that any FHU-network in this class must have. There are examples of 
X in general position of any even cardinality N > 0 showing that this estimate is 
tight. 

3 Proofs 

Below we identify functions I : X -t R with N -tuples of their values at N -points 
of X (ordered in a unique manner). Under this identification the FF-networks Fw 
can be regarded as a transformation 

WERk-tFwERN (3) 

with the range R(Fw) def {Fw ; w E Rk} C RN. 

3.1 Proof of Theorem 1. 

In this case the transformation (3) is continuously differentiable. Every value of it 
is singular since k < N, thus according to Sard's Theorem [5], R(Fw) C RN has 
Lebesgue measure O. It is enough to show now that if 

lEU - R(Fw) (4) 

and 

lim IIFw(i) - III = 0 and Ilw(i)11 < M, 
l-tOO 

(5) 

for some M > 0, then a contradiction follows. Actually from (5) it follows that 

I belongs to the topological closure cl(RM) ofRM def {Fw; w E Rk & Ilwll;:; 
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M}. However, RM is a compact set as a continuous image of a closed ball {w E 
RA: ; Ilwll :::; M}, so cl(RM) = RM. Consequently f E RM C R(Fw) which 
contradicts (4). Q.E.D. 

3.2 Proof of Theorem 2. 

We con!>ider the FF-network (1) for which there exists a finite set VCR of s points 
such that "pW",i(X) E V for every w" ERA:", 1 ~ i ~ k' and x E X. It is sufficient 
to show that the set R(Fw) of all functions computable by Fw is not dense in U if 
k' < N . Actually, we can write R( Fw) as a union 

R(Fw) = (6) 

where each Lw" ~f {2::~l w~'l/Jw",i ; w~, ... , W~, E R} C RN is a linear subspace 
of dimension:::; k' :::; N uniquely determined by the vectors 'l/Jw",i E VN C RN, 
i = 1, ... ,k'. However there is a finite number (:::; sN) of different vectors in VN, 
thus there is only a finite number (:::; sNA:) of different linear subspaces in the family 
{Lw" ; w" E RA: II

}. Hence, as k' < N, the union (6) is a closed no-where dense 
subset of R N as a finite union of proper linear subspaces (each of which is a closed 
and nowhere dense subset). Q.E.D. 

3.3 Proof of Proposition 3. 

We state first a stronger result. We say that a set L of functions on X is convex if 
for any couple of functions ¢>1, ¢>2 on X any Q > 0, {3 > 0, Q + {3 = 1, the function 
Q¢>l + {3¢>2 also belongs to L. 

Proposition 5 Let L be a convex set of functions on X = {Xl, X2, ... , XN} im­
plementing every dichotomy of X. Then for each i E {1, 2, ... , N} there exists a 
function ¢>i E L such that ¢>i(Xi) -# 0 and ¢>i(Xj) = 0 for 1 ~ i i- j :::; N . 

Proof. We define a transformation SGN : R X --+ {-1, 0, +1}N 

SGN(¢» 
def 

where sgn(~) def -1 if ~ < 0, sgn(O) ~f 0 and sgn(~) def + 1 if ~ > O. We denote by 

WA: the subset of {-1, 0, +l}N of all points q = (ql, ... ,qN) such that 2:~l Iqil = k, 
for k = O,1, ... ,N. 

We show first that convexity of L implies for k E {1, 2, ... , N} the following 

WA: C SGN(L) => W k - l C SGN(L). (7) 

For the proof assume WI: C SGN(L) and q = (q1, ... , qN) E {-1, 0, +1}N is such that 

2:~l Iqil = k - 1. We need to show that there exists ¢> E L such that 

SGN(¢» = q. (8) 
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The vector q has at least one vanishing entry, say, without loss of generality, q1 = O. 
Let ¢+ and ¢- be two functions in L such that 

SGN(¢+) = q+ 

SGN(¢-) = q-

def 

def 

( + 1, Q2, ... , q N ), 

(-l,Q2, ... ,QN)' 

Such ¢+ and ¢- exist since q+, q- E Wk. The function 

belongs to L as a convex combination of two functions from L and satisfies (8). 

Now note that the assumptions of the proposition imply that W N C SGN(L). Ap­
plying (7) repeatedly we find that W 1 ~ SGN(L), which means that for every index 
i, 1 ~ i ~ N, there exists a function ¢l E L with vanishing all entries but the i-th 
one. Q.E.D. 

N ow let us see how Proposition 3 follows from the above result. Sufficiency is 
obvious. For the necessity we observe that the family Fw of functions on X is 
convex being a linear space in the case of a FHU-network (1). Now if this network 
can compute every dichotomy of X, then each function ¢i as in Proposition 5 equals 
to FWi for some Wi E R k. Thus n(Fw) = RN since those functions make a basis 

of R X ~ RN. Q.E.D. 

4 Discussion of results 

Theorem 1 combined with observations in [4] allows us to make the following contri­
bution to the recent controversy on relevance/irrelevance of Kolmogorov's theorem 

on representation of continuous functions In _ R, I def [0,1] (c.f. [4, 7]), since In 
contains subsets of any cardinality. 

The FF-networks for approximations of continuous functions on 
In of rising accuracy have to be complex, at leAst in one of the 
following ways: 

• involve adjustment of a diverging number of synaptic weights 
and hidden units, or 

• require adjustment of synaptic weights of diverging magnitude, 
or 

• involve selection of "pathological" squashing functions. 

Thus one can only shift complexity from one kind to a.nother, but not eliminate 
it completely. Although on theoretical grounds one can easily argue the virtues 
and simplicity of one kind of complexity over the other, for a genuine hardware 
implementation any of them poses an equally serious obstacle. 

For the classes of FF-networks and benchmark tests considered, the networks with 
multiple hidden layers have no decisive superiority over the simple structures with 
fixed hidden units unless dimensionality of the input space is significant. 
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5 Appendix: Capacity and Function-Counting Theorem 

The above results can be viewed as a step towards estimation of capacity of networks 
to memorise dichotomies. We intend to elaborate this subject further now and 
outline some of our recent results on this matter. A more detailed presentation will 
be available in future publications. 

The capacity of a network in the sense of Cover [2] (Cover's capacity) is defined as 
a maximal N such that for a randomly selected subset X C R n of N points with 
probability 1 the network can implement 1/2 of all dichotomies of X. For a linear 
perceptron 

Ie 
def "\:" 

Fw(x) = .LJ Wi~i 
i=l 

(x EX), (9) 

where w E R n is the vector of adjustable synaptic weights, the capacity is 2n,and 2k 
for a FHU-network (1) with suitable chosen hidden units 4>1, ... , 4>1e. These results are 
based on the so-called Function-Counting Theorem proved for the linear perceptron 
in the sixties (c.r. [2]). Extension of this result to the multilayer case is still an open 
problem (c.f. T. Cover's talk on NIPS'92). However, we have recently obtained the 
following partial result in this direction. 

Theorem 6 Given a continuous probability density on R n , for a randomly selected 
subset Xc R n of N points the FF-network having the first hidden layer built from 
h ThL-neurons can implement 

nh ( ) def N - 1 
C(N,nh)=2L i ' 

z=o 
(10) 

dichotomies of X with a non-zero probability. Such a network can be constructed 
using nh variable synaptic weights between input and hidden layer only. 

For h = 1 this theorem reduces to its classical form for which the phrase "with 
non-zero probability" can be strengthened to "with probability I" [2]. 

The proof of the theorem develops Sakurai's idea of utilising the Vandermonde 

determinant to show the following property of the curve c( t) def (t, t 2 , ... , t n -1), 

t > 0 

(*) for any subset X of N points Xl = c(td, ... , XN = C(tN), tl < 
t2 < ... < tN, any hyperplane in Rn can intersect no more then n 
different segments [Xi,Xi+l] ofc. 

The first step of the proof is to observe that the property (*) itself implies that 
the count (10) holds for such a set X. The second and the crucial step consists in 
showing that for a sufficiently small € > 0, for any selection of points Xl, ... ,XN E R n 

such that Ilxi - xd I < € for i = 1, ... , n, there exists a curve c passing through these 
points and satisfying also the property (*). 

Theorem 6 implies that in the class of multilayer FF-networks having the first hidden 
layer built from ThL-neurons only the single hidden layer networks are the most 
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efficient, since the higher layers have no influence on the number of implemented 
dichotomies (at least for the class of domains x C R n considered). 

Note that by virtue of (10) and the classical argument of Cover [2] for the class 
of domains X as in the Theorem 6 the capacity of the network considered is 2nh. 
Thus the following estimates hold. 

Corollary 7 In the class of FF-networks with a fixed nu.mber h of hidden units 
the ratio of the maximal capacity per hidden unit achievable by FHU-network to 
the maximal capacity per hidden unit achievable by VHU-networks having the ThL­
neurons in the first hidden layer only is 2h/2nh = lin. The analogous ratio for 
capacities per variable synaptic weight (in the class of FF-networks with a fixed 
number s of variable synaptic weights) is :::; 2s 12s = 1. 
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