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Abstract 

The attempt to find a single "optimal" weight vector in conven­
tional network training can lead to overfitting and poor generaliza­
tion. Bayesian methods avoid this, without the need for a valida­
tion set, by averaging the outputs of many networks with weights 
sampled from the posterior distribution given the training data. 
This sample can be obtained by simulating a stochastic dynamical 
system that has the posterior as its stationary distribution. 

1 CONVENTIONAL AND BAYESIAN LEARNING 

I view neural networks as probabilistic models, and learning as statistical inference. 
Conventional network learning finds a single "optimal" set of network parameter 
values, corresponding to maximum likelihood or maximum penalized likelihood in­
ference. Bayesian inference instead integrates the predictions of the network over 
all possible values of the network parameters, weighting each parameter set by its 
posterior probability in light of the training data. 

1.1 NEURAL NETWORKS AS PROBABILISTIC MODELS 

Consider a network taking a vector of real-valued inputs, x, and producing a vector 
of real-valued outputs, y, perhaps computed using hidden units. Such a network 
architecture corresponds to a function, I, with y = I(x, w), where w is a vector of 
connection weights. If we assume the observed outputs, y, are equal to y plus Gaus­
sian noise of standard deviation (j, the network defines the conditional probability 
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for an observed output vector given an input vector as follows: 

P(y I x, 0") ex: exp( -IY - !(x, w)12 /20"2) (1) 

The probability of the outputs in a training set (Xl, yt), ... , (Xn, Yn) given this fixed 
noise level is therefore 

P(Yl, ... , Yn I Xl,·.·, Xn, 0") ex: exp( - E lYe - !(Xe, w)12 /20"2) (2) 
e 

Often 0" is unknown. A Bayesian approach to handling this is to assign 0" a vague 
prior distribution and then ·.ntcgrating it away, giving the following probability for 
the training set (see (Buntine and Weigend, 1991) or (Neal, 1992) for details): 

mp±nD 

P(Yl,"" Yn I Xl, ... , Xn) ex: (so + E lYe - !(Xe, w)12) - 2 (3) 
e 

where So and mo are parameters of the prior for 0". 

1.2 CONVENTIONAL LEARNING 

Conventional backpropagation learning tries to find the weight vector that assigns 
the highest probability to the training data, or equivalently, that minimizes minus 
the log probability of the training data. When 0" is assumed known, we can use (2) 
to obtain the following objective function to minimize: 

M(w) = E lYe - !(Xe, w)12 / 20"2 (4) 
e 

When 0" is unknown, we can instead minimize the following, derived from (3): 

M(w) (5) 
e 

Conventional learning often leads to the network over fitting the training data -
modeling the noise, rather than the true regularities. This can be alleviated by 
stopping learning when the the performance of the network on a separate validation 
set begins to worsen, rather than improve. Another way to avoid overfitting is to 
include a weight decay term in the objective function, as follows: 

M'(w) = Alwl 2 + M(w) (6) 

Here, the data fit term, M(w), may come from either (4) or (5). We must somehow 
find an appropriate value for A, perhaps, again, using a separate validation set. 

1.3 BAYESIAN LEARNING AND PREDICTION 

Unlike conventional training, Bayesian learning does not look for a single "optimal" 
set of network weights. Instead, the training data is used to find the posterior 
probability distribution over weight vectors. Predictions for future cases are made 
by averaging the outputs obtained with all possible weight vectors, with each con­
tributing in proportion to its posterior probability. 

To obtain the posterior, we must first define a prior distribution for weight vectors. 
We might, for example, give each weight a Gaussian prior of standard deviation w: 

(7) 
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We can then obtain the posterior distribution over weight vectors given the training 
cases (Xl, yt), ... , (Xn, Yn) using Bayes' Theorem: 

P(w I (Xl, yt}, ... , (Xn, Yn)) oc P(w) P(YI, ... , Yn I Xl, ... , Xn, w) (8) 

Based on the training data, the best prediction for the output vector in a test case 
with input vector X., assuming squared-error loss, is 

Y. = J /(x.,w)P(w I (xI,yd,· .. ,(xn,Yn))dw (9) 

A full predictive distribution for the outputs in the test case can also be obtained, 
quantifying the uncertainty in the above prediction. 

2 INTEGRATION BY MONTE CARLO METHODS 

Integrals such as that of (9) are difficult to evaluate. Buntine and Weigend (1991) 
and MacKay (1992) approach this problem by approximating the posterior distribu­
tion by a Gaussian. Instead, I evaluate such integrals using Monte Carlo methods. 

If we randomly select weight vectors, wo, ... , WN-I, each distributed according to 
the posterior, the prediction for a test case can be found by approximating the 
integral of (9) by the average output of networks with these weights: 

y. ~ ~ L/(x.,Wt) (10) 
t 

This formula is valid even if the Wt are dependent, though a larger sample may 
then be needed to achieve a given error bound. Such a sample can be obtained 
by simulating an ergodic Markov chain that has the posterior as its stationary 
distribution. The early part of the chain, before the stationary distribution has 
been reached, is discarded. Subsequent vectors are used to estimate the integral. 

2.1 FORMULATING THE PROBLEM IN TERMS OF ENERGY 

Consider the general problem of obtaining a sample of (dependent) vectors, qt, 
with probabilities given by P( q). For Bayesian network learning, q will be the 
weight vector, or other parameters from which the weights can be obtained, and 
the distribution of interest will be the posterior. 

It will be convenient to express this probability distribution in terms of a potential 
energy function, E( q), chosen so that 

P(q) oc exp(-E(q)) (11) 

A momentum vector, p, of the same dimensions as q, is also introduced, and defined 
to have a kinetic energy of ~ \pI2. The sum of the potential and kinetic energies is 
the Hamiltonian: 

H(q,p) = E(q) + ~lpl2 (12) 

From the Hamiltonian, we define ajoint probability distribution over q and p (phase 
space) as follows: 

P(q,p) oc exp(-H(q,p)) (13) 

The marginal distribution for q in (13) is that of (11), from which we wish to sample. 
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We can therefore proceed by sampling from this joint distribution for q and p, and 
then just ignoring the values obtained for p. 

2.2 HAMILTONIAN DYNAMICS 

Sampling from the distribution (13) can be split into two subproblems - first, 
to sample uniformly from a surface where H, and hence the probability, is con­
stant, and second, to visit points of differing H with the correct probabilities. The 
solutions to these subproblems can then be interleaved to give an overall solution. 

The first subproblem can be solved by simulating the Hamiltonian dynamics of 
the system, in which q and p evolve through a fictitious time, r, according to the 
following equations: 

dq 

dr 
8H 
8p = p, 

dp 8H - = -- = -VE(q) 
dr 8q 

(14) 

This dynamics leaves H constant, and preserves the volumes of regions of phase 
space. It therefore visits points on a surface of constant H with uniform probability. 

When simulating this dynamics, some discrete approximation must be used. The 
leapfrog method exactly maintains the preservation of phase space volume. Given 
a size for the time step, E, an iteration of the leapfrog method goes as follows: 

p(r+ E/2) 

q(r+ E) 

p(r + E) 

per) - (E/2)VE(q(r») 

q(r)+Ep 

p(r + E) - (E/2)V E(q(r + E» 

2.3 THE STOCHASTIC DYNAMICS METHOD 

(15) 

To create a Markov chain that converges to the distribution of (13), we must inter­
leave leapfrog iterations, which keep H (approximately) constant, with steps that 
can change H. It is convenient for the latter to affect only p, since it enters into H 
in a simple way. This general approach is due to Anderson (1980). 

I use stochastic steps of the following form to change H: 

p' (16) 

where 0 < (l' < 1, and n is a random vector with components picked independently 
from Gaussian distributions of mean zero and standard deviation one. One can 
show that these steps leave the distribution of (13) invariant. Alternating these 
stochastic steps with dynamical leapfrog steps will therefore sample values for q 
and p with close to the desired probabilities. In so far as the discretized dynamics 
does not keep H exactly constant, however, there will be some degree of bias, which 
will be eliminated only in the limit as E goes to zero. 

It is best to use a value of (l' close to one, as this reduces the random walk aspect 
of the dynamics. If the random term in (16) is omitted, the procedure is equivalent 
to ordinary batch mode backpropagation learning with momentum. 
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2.4 THE HYBRID MONTE CARLO METHOD 

The bias introduced into the stochastic dynamics method by using an approxima­
tion to the dynamics is eliminated in the Hybrid Monte Carlo method of Duane, 
Kennedy, Pendleton, and Roweth (1987). 

This method is a variation on the algorithm of Metropolis, et al (1953), which 
generates a Markov chain by considering randomly-selected changes to the state. 
A change is always accepted if it lowers the energy (H), or leaves it unchanged. If 
it increases the energy, it is accepted with probability exp( -LlH), and is rejected 
otherwise, with the old state then being repeated. 

In the Hybrid Monte Carlo method, candidate changes are produced by picking a 
random value for p from its distribution given by (13) and then performing some pre­
determined number of leapfrog steps. If the leapfrog method were exact, H would 
be unchanged, and these changes would always be accepted. Since the method 
is actually only approximate, H sometimes increases, and changes are sometimes 
rejected, exactly cancelling the bias introduced by the approximation. 

Of course, if the errors are very large, the acceptance probability will be very low, 
and it will take a long time to reach and explore the stationary distribution. To 
avoid this, we need to choose a step size (f) that is small enough. 

3 RESULTS ON A TEST PROBLEM 

I use the "robot arm" problem of MacKay (1992) for testing. The task is to learn 
the mapping from two real-valued inputs, Xl and X2, to two real-valued outputs, YI 
and Y2, given by 

ih = 2.0 cos(xI) + 1.3 COS(XI + X2) 

Y2 = 2.0 sin(xI) + 1.3 sin(xi + X2) 
(17) 
(18) 

Gaussian noise of mean zero and standard deviation 0.05 is added to (YI' Y2) to give 
the observed position, (YI, Y2). The training and test sets each consist of 200 cases, 
with Xl picked randomly from the ranges [-1.932, -0.453] and [+0.453, +1.932], 
and X2 from the range [0.534,3.142]. 

A network with 16 sigmoidal hidden units was used. The output units were linear. 
Like MacKay, I group weights into three categories - input to hidden, bias to 
hidden, and hidden/bias to output. MacKay gives separate priors to weights in 
each category, finding an appropriate value of w for each. I fix w to one, but 
multiply each weight by a scale factor associated with its category before using it, 
giving an equivalent effect. For conventional training with weight decay, I use an 
analogous scheme with three weight decay constants (.\ in (6». 

In all cases, I assume that the true value of u is not known. I therefore use (3) for 
the training set probability, and (5) for the data fit term in conventional training. 
I set 80 = rno = 0.1, which corresponds to a very vague prior for u. 

3.1 PERFORMANCE OF CONVENTIONAL LEARNING 

Conventional backpropagation learning was tested on the robot arm problem to 
gauge how difficult it is to obtain good generalization with standard methods. 
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Figure 1: Conventional backpropagation learning - (a) with no weight decay, (b) with 
carefully-chosen weight decay constants. The solid lines give the squared error on the 
training data, the dotted lines the squared error on the test data. 

Fig. l(a) shows results obtained without using weight decay. Error on the test set 
declined initially, but then increased with further training. To achieve good results, 
the point where the test error reaches its minimum would have to be identified using 
a separate validation set. 

Fig. l(b) shows results using good weight decay constants, one for each category 
of weights, taken from the Bayesian runs described below. In this case there is no 
need to stop learning early, but finding the proper weight decay constants by non­
Bayesian methods would be a problem. Again, a validation set seems necessary, as 
well as considerable computation. 

Use of a validation set is wasteful, since data that could otherwise be included in 
the training set must be excluded. Standard techniques for avoiding this, such as 
"N-fold" cross-validation, are difficult to apply to neural networks. 

3.2 PERFORMANCE OF BAYESIAN LEARNING 

Bayesian learning was first tested using the unbiased Hybrid Monte Carlo method. 
The parameter vector in the simulations (q) consisted of the unsealed network 
weights together with the scale factors for the three weight categories. The actual 
weight vector (w) was obtained by multiplying each unsealed weight by the scale 
factor for its category. 

Each Hybrid Monte Carlo run consisted of 500 Metropolis steps. For each step, a 
trajectory consisting of 1000 leapfrog iterations with f = 0.00012 was computed, 
and accepted or rejected based on the change in H at its end-point. Each run 
therefore required 500,000 batch gradient evaluations, and took approximately four 
hours on a machine rated at about 25 MIPS. 

Fig. 2(a) shows the training and test error for the early portion of one Hybrid Monte 
Carlo run. After initially declining, these values fluctuate about an average. Though 
not apparent in the figure, some quantities (notably the scale factors) require a 
hundred or more steps to reach their final distribution. The first 250 steps of each 
run were therefore discarded as not being from the stationary distribution. 

Fig. 2(b) shows the training and test set errors produced by networks with weight 
vectors taken from the last 250 steps of the same run. Also shown is the error on 
the test set using the average of the outputs of all these networks - that is, the 
estimate given by (10) for the Bayesian prediction of (9). For the run shown, this 
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Figure 2: Bayesian learning using Hybrid Mon~e Carlo - (a) early portion of run, (b) last 
250 iterations. The solid lines give the squared error on the training set, the dotted lines 
the squared error on the test set, for individual networks. The dashed line in (b) is the 
test error when using the average of the outputs of all 250 networks. 
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test set error using averaged outputs is 0.00559, which is (slightly) better than any 
results obtained using conventional training. Note that with Bayesian training no 
validation set is necessary. The analogues of the weight decay constants - the 
weight scale factors - are found during the course of the simulation. 

Another advantage of the Bayesian approach is that it can provide an indication 
of how uncertain the predictions for test cases are. Fig. 3 demonstrates this. As 
one would expect, the uncertainty is greater for test cases with inputs outside the 
region where training data was supplied. 

3.3 STOCHASTIC DYNAMICS VS. HYBRID MONTE CARLO 

The uncorrected stochastic dynamics method will have some degree of systematic 
bias, due to inexact simulation of the dynamics. Is the amount of bias introduced 
of any practical importance, however? 
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Figure 4: Bayesian learning using uncorrected stochastic dynamics - (a) Training and 
test error for the last 250 iterations of a run with c = 0.00012, (b) potential energy (E) 
for a run with c = 0.00030. Note the two peaks where the dynamics became unstable. 

To help answer this question, the stochastic dynamics method was run with pa­
rameters analogous to those used in the Hybrid Monte Carlo runs. The step size of 
( = 0.00012 used in those runs was chosen to be as large as possible while keeping 
the number of trajectories rejected low (about 10%). A smaller step size would not 
give competitive results, so this value was used for the stochastic dynamics runs as 
well. A value of 0.999 for 0' in (16) was chosen as being (loosely) equivalent to the 
use of trajectories 1000 iterations long in the Hybrid Monte Carlo runs. 

The results shown in Fig. 4(a) are comparable to those obtained using Hybrid Monte 
Carlo in Fig. 2(b). Fig. 4(b) shows that with a larger step size the uncorrected 
stochastic dynamics method becomes unstable. Large step sizes also cause problems 
for the Hybrid Monte Carlo method, however, as they lead to high rejection rates. 

The Hybrid Monte Carlo method may be the more robust choice in some circum­
stances, but uncorrected stochastic dynamics can also give good results. As it is 
simpler, the stochastic dynamics method may be better for hardware implemen­
tation, and is a more plausible starting point for any attempt to relate Bayesian 
methods to biology. Numerous other variations on these methods are possible as 
well, some of which are discussed in (Neal, 1992). 
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