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Abstract 

We have attempted to use information theoretic quantities for ana­
lyzing neuronal connection structure from spike trains. Two point 
mu tual information and its maximum value, channel capacity, be­
tween a pair of neurons were found to be useful for sensitive de­
tection of crosscorrelation and for estimation of synaptic strength, 
respectively. Three point mutual information among three neurons 
could give their interconnection structure. Therefore, our informa­
tion theoretic analysis was shown to be a very powerful technique 
for deducing neuronal connection structure. Some concrete exam­
ples of its application to simulated spike trains are presented. 

1 INTRODUCTION 

The deduction of neuronal connection structure from spike trains, including synaptic 
strength estimation, has long been one of the central issues for understanding the 
structure and function of the neuronal circuit and thus the information processing 
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mechanism at the neuronal circuitry level. A variety of crosscorrelational techniques 
for two or more neurons have been proposed and utilized (e.g., Melssen and Epping, 
1987; Aertsen et. ai., 1989). There are, however, some difficulties with those 
techniques, as discussed by, e.g., Yang and Shamma (1990). It is sometimes difficult 
for the method to distinguish a significant crosscorrelation from noise, especially 
when the amount of experimental data is limited. The quantitative estimation 
of synaptic connectivity is another difficulty. And it is impossible to determine 
whether two neurons are directly connected or not, only by finding a significant 
crosscorrelation between them. 

The information theory has been shown to afford a powerful tool for the description 
of neuronal input-output relations, such as in the investigation on the neuronal cod­
ing of the visual cortex (Eckhorn et. ai., 1976; Optican and Richmond, 1987). But 
there has been no extensive study to apply it to the correlational analysis of action 
potential trains. Because a correlational method using information theoretic quan­
tities is considered to give a better correlational measure, the information theory is 
expected to offer a unique correlational method to overcome the above difficulties. 

In this paper, we describe information theory-based correlational analysis for action 
potential trains, using two and three point mutual information (MI) and channel 
capacity. Because the information theoretic analysis by two point MI and channel 
capacity will be published in near future (Yamada et. ai., 1993a), more detailed de­
scription is given here on the analysis by three point MI for infering the relationship 
among three neurons. 

2 CORRELATIONAL ANALYSIS BASED ON 
INFORMATION THEORY 

2.1 INFORMATION THEORETIC QUANTITIES 

According to the information theory, the n point mutual information expresses the 
amount of information shared among n processes (McGill, 1955). Let X, Y and 
Z be processes, and t and s be the time delays of X and Y from Z, respectively. 
Using Shannon entropies H, two point MI between X and Y and three point MI, 
are defined (Shannon, 1948; Ikeda et. ai., 1989): 

I(Xt : Ys ) 

I(Xt : Y, : Z) 
H(Xt ) + H(Y,) - H(Xt, Y,), 
H(Xt ) + H(Y,) + H(Z) - H(Xt, y,) 
-H(Y" Z) - H(Z, X t ) + H(Xt, Y" Z). 

I(Xt : Ys : Z) is related to I(Xt : Y,) as follows: 

(1 ) 

(2) 

(3) 

where I(Xt : YsIZ) means the two point conditional MI between X and Y if the 
state of Z is given. On the other hand, channel capacity is given by (r = s - t), 

CC(X: Yr) = maxI(X: Yr). 
p(x,) 

( 4) 

We consider now X, Y and Z to be neurons whose spike activity has been measured. 
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Two point MI and two point conditional MI are obtained by (i, j, k = 0, 1), 

(X Y) ~ ( I) ( )1 p(Yj,Tlxi) 
I : T = L....J P Yj,T Xi P Xi og (.)' 

. . P YJ,T 
I,J 

(5) 

I(X YIZ) ~( I)()l p(xi,t,Yj"lzk) 
t:, = L....J P Xi,t, Yj" Zk P Zk og (x. Iz ) ( . Iz ). 

. . •. P I,t k P YJ,s k 
I,J,'" 

(6) 

where x, Y and z mean the states of neurons, e.g., Xl for the firing state and 
Xo for the non-firing state of X, and p( ) denotes probability. And three point 
MI is obtained by using Equation (3). Those information theoretic quantities are 
calculated by using the probabilities estimated from the spike trains of X, Y and Z 
after the spike trains are converted into time sequences consisting of 0 and 1 with 
discrete time steps, as described elswhere (Yamada et. al., 1993a). 

2.2 PROCEDURE FOR THREE POINT MUTUAL INFORMATION 
ANALYSIS 

Suppose that a three point MI peak is found at (to, so) in the t, s-plane (see Figure 1). 
The three time delays, to, So and r = So - to, are obtained. They are supposed to be 
time delays in three possible interconnections between any pair of neurons. Because 
the peak is not significant if only one pair of the three neurons is interconnected, two 
or three of the possible interconnections with corresponding time delays should truly 
work to produce the peak. We will utilize I(n : m) and I(n : mil) (n, m, I = X, Y or 
Z) at the peak to find working interconnections out of them. These quantities are 
obtained by recalculating each probability in Equations (5) and (6) over the whole 
peak region. 

If two neurons, e.g., X and Y, are not interconnected either I(X : Y) or I(X : YIZ) 
is equal to zero. The reverse proposition, however, is not true. The necessary 
and sufficient condition for having no interconnection is obtained by calculating 
I( n : m) and I( n : mil) for all possible interconnection structures. The neurons are 
rearranged and renamed A, Band C in the order of the time delays. There are only 
four interconnection structures, as shown in Table 1. 

I: No interconnection between A and B. A and B are statistically independent, i. e., 
p(aj,bj ) = p(aj)p(bj ), I(A: B) = O. The three point MI peak is negative. 

II: No interconnection between A and C. The states of A and C are statistically in­
dependent when the state of B is given, i.e., p(ai' cklbj) = p(adbj)p(Cklbj), 
I(A : CIB) = O. The peak is positive. 

III: No interconnection between Band C. Similar to case II, because p(bj , cklai) = 
p(bjlai)p(cklai), I(B: CIA) = O. The peak is positive. 

IV: Three in terconnections. The above three cases are considered to occur concomi­
tantly in this case. The peak is positive or negative, depending on their 
relative contributions. Because A and B should have an apparent effect on 
the firing-probability of the postsynaptic neurons, I(A : B), I(A : CIB) 
and I(B : CIA) are all non-zero except for the case where the activity of 
B completely coincides with that of A with the specified time delay (in 
this case, both I(A : CIB) and I(B : CIA) are zero (see Yamada et. al., 
1993b)). 
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Table 1. Interconnection Structure and Information Theoretic Quantities 

Interconnection I: ~ II: ~ III: @ 
IV: ~ 

~@ Structure ~@cl@ ctJ@ 
2 point MI 

I(A:B) =0 >0 >0 >0 
I(A:C) ~O >0 >0 ~O 

I(B:C) ~O >0 >0 ~O 

2 point condition MI 
I(A:B I C) >0 ~O ~O ~O 

I(A:CIB) >0 =0 ~O >0 
I(B:C I A) >0 ~O =0 >0 

3 point MI 
I(A:B:C) + + + or -

From what we have described above, the interconnection structure for a three point 
MI peak is deduced utilizing the following procedure; 

(a) A negative 3pMI peak: it corresponds to case I or IV. The problem is to 
determine whether A and B are interconnected or not. 

(1) If I(A : B) = 0, case I. 
(2) If I(A : B) > 0, case IV. 

(b) A positive 3pMI peak: it corresponds to case II, III or IV. The existence of the 
A-C and B-C interconnections has to be checked. 

(1) If I(A : CIB) > ° and I(B : CIA) > 0, case IV. 
(2) If I(A : CIB) = ° and I(B : CIA) > 0, case II. 

(3) If I(A : CIB) > ° and I(B : CIA) = 0, case III. 

(4) If I(A : CIB) = ° and I(B : CIA) = 0, the interconnection structure 
cannot be ded nced except for the A - B interconnection. 

This procedure is applicable, if all the time delays are non-zero. If otherwise, some 
of the interconnections cannot be determined (Yamada et. ai., 1993b). 

3 SIMULATED SPIKE TRAINS 

In order to characterize our information theoretic analysis, simulations of neu­
ronal network models were carried out. We used a model neuron described by 
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the Hodgkin-Huxley equations (Yamada et. ai., 1989). The used equations and pa­
rameters were described (Yamada et. al., 1993a). The Hodgkin-Huxley equations 
were mathematically integrated by the Runge-Kutta-Gill technique. 

4 RESULTS AND DISCUSSION 

4.1 ANALYSIS BY TWO POINT MUTUAL INFORMATION AND 
CHANNEL CAPACITY 

The performance was previously reported of the information theoretic analysis by 
two point MI and channel capacity (Yamada et. ai., 1993a). 

Briefly, this anlytical method was compared with some conventional ones for both 
excitatory and inhibitory connections using action potential trains obtained by the 
simulation of a model neuronal network. It was shown to have the following ad­
vantages. First, it reduced correlational measures within the bounds of noise and 
simultaneously amplified beyond the bounds by its nonlinear function. It should be 
easier in its crosscorrelation graph to find a neuron pair having a weak but signif­
icant interaction, especially when the synaptic strength is small or the amount of 
experimental data is limited. Second, channel capacity was shown to allow fairly 
effective estimation of synaptic strength, being independent of the firing probability 
of a presynaptic neuron, as long as this firing probability was not large enough to 
have the overlap of two successive postsynaptic potentials. 

4.2 ANALYSIS BY THREE POINT MUTUAL INFORMATION 

The practical application of the analysis by three point MI is shown below in detail, 
using spike trains obtained by simulation of the three-neuron network models shown 
in Figures 1 and 2 (Yamada et. ai., 1993b). 

The network model in Figure 1(1) has three interconnections. In Figure 1(2), three 
point MI has two positive peaks at (17ms, 12ms) (unit "ms" is omitted hereafter) 
and (17,30), and one negative peak at (0,12). For the peak at (17,12), the neurons 
are renamed A, B and C from the time delays (Z as A, Y as B and X as C), as 
in Table 1. Because only I(B : CIA) ..:. 0 (see Figure 1 legend), the peak indicates 
case III with A-+B (Z-+Y) (s = 12) and A-+C (Z-+X) (t = 17) interconnections. 
Similarly, the peak at (17,30) indicates Z -+X and X -+Y (s - t = 13) intercon­
nections, and the peak at (0,12) indicates Z-+Y and X -+Y interconnections. The 
interconnection structure deduced from each three point MI peak is consistent with 
each other, and in agreement with the network model. 

Alternatively, the three point MI graphical presentation such as shown in Figure 
1(2) itself gives indication of some truly existing interconnections. If more than two 
three point MI peaks are found on one of the three lines, t = to, s = So and s-t = TO, 
the interconnection with the time delay represented by this line is considered to be 
real. For example, because the peaks at (17, 12) and (17, 30) are on the line of t = 17 
(Figure 1(2)), the interconnection represented by t = 17 (Z-+X) are considered to 
be real. In a similar manner, the interconnections of s = 12 (Z-+Y) and s - t = 12 
(X -+Y) are obtained. But this graphical indication is not complete, and thus the 
calculation of two point MI's and two point conditional MI's should be always 
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(1) 

(2) 

0.0010 

-so 

Neuron X ~ Neuron Y 

DNeuronZ 

o so 
t (ms) 

Figure 1. Three point Ml analYsis of simulated spike trains. (1) A. three-neuron 
network model with Z .... X Z .... Y and X .... Y interconnections. The total number of 
spikes; X:40

00
• y:5400• Z:3150. (2) Three poinl Ml analysis of spike trains. Three 

point Ml has two positive peaks al (17.12) and (17.30). and one negative peak at 
(0.12). For the peak al (17. 12) the neurons are renamed (Z as A. Y as B and X 
as C). Two point Ml and two point conditional M1 for the peak at (17. 12) are: 
I(A: B) == 0.03596. I(A: C) == 0.06855• I(B : C) == 0.01375• I(A : BIC) == 0.02126. 
I(A : CIB) == 0.05376. I(B : CIA) == 0.00011. So. I( B : CIA) .:. o. indicating case 

~.oo10 

111 (see Table 1) with A .... B (Z .... Y) and A .... C (Z .... X) interconnections. Similarly, 
for the peaks at (17,30) and at (0,12). Z .... X and X .... Y interConnections. and Z .... Y 

and X .... Y interconnections are obtalned, respectively. 

performed for connrma.tion. The nelwork model in Figure 2(1) has four interCOnnections. Three point Ml has 
ftVe major peaks: four positive peaks at (17. -12). (17. 30). (_24.-

12
) and (1

7
•
12

) 
and one negative peak at (0.10). The peaks at (17. -12). (17. 12) and (17. 30) Me 
on the line 01 t == 17 (Z .... X). the peaks at (17, -12) and (-24. -12) are on Il\e 
line 01 s == -12 (Z ... Y). the peaks at (17.12) and (0. 10) are on the line of s == 12 
(Z .... Y). and the peaks at (-24. -12), (0.10) and (17. 30) are on the line of 
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(1) 

(2) 

0.0008 

-0.0008 

Neuron X ~ Neuron Y 

~euronz 

o 
t (ms) 50 

Figure 2. Three point MI analysis of simulated spike trains. (1) A three-neuron 
network model with Z-+X Z-+Y, Z~Y and X-+Y interconnections. The total 
number of spikes; X:4300, Y:5150, Z:4850. (2) Three point MI analysis of spike 
trains. Three point MI has five major peaks, four positive peaks at (17, -12), 
(17,12), (17,30) and (-24, -12), and one negative peak at (0,10). 

s - t = 12 (X -+Y). The calculation of two point MI and two point conditional MI 
for each peak gives the confirmation that each three point MI peak was produced 
by two interconnections. Namely, their calculation indicates Z-+X (t = 17), Z~Y 
(s = -12), Z-+Y (s = 12) and X-+Y (s - t = 12) interconnections. There are 
also some small peaks. They are considered to be ghost peaks due to two or three 
interconnections, at least one of wllich is a combination of two interconnections 
found by analyzing the major peaks. For example, the positive peak at (-7, -12) 
indicates Z~Y and X-+Y interconnections, but the latter (s - t = -5) is the 
combination of the Z -+ X interconnection (t = 17) and the Z -+ Y interconnection 
(s = 12). 

The interconnection structure of a network containing an inhibitory intercolLllectioll 
or consisting of more than four neurons can also be deduced, although it becomes 
more difficult to perform the three point MI analysis. 
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