
Use of Bad Training Data For Better
Predictions

Tal Grossman
Complex Systems Group (T13) and CNLS
LANL, MS B213 Los Alamos N .M. 87545

Alan Lapedes
Complex Systems Group (T13)

LANL, MS B213 Los Alamos N.M. 87545
and The Santa Fe Institute, Santa Fe, New Mexico

Abstract

We show how randomly scrambling the output classes of various
fractions of the training data may be used to improve predictive
accuracy of a classification algorithm. We present a method for
calculating the "noise sensitivity signature" of a learning algorithm
which is based on scrambling the output classes. This signature can
be used to indicate a good match between the complexity of the
classifier and the complexity of the data. Use of noise sensitivity
signatures is distinctly different from other schemes to avoid over­
training, such as cross-validation, which uses only part of the train­
ing data, or various penalty functions, which are not data-adaptive.
Noise sensitivity signature methods use all of the training data and
are manifestly data-adaptive and non-parametric. They are well
suited for situations with limited training data.

1 INTRODUCTION

A major problem of pattern recognition and classification algorithms that learn from
a training set of examples is to select the complexity of the model to be trained.
How is it possible to avoid an overparameterized algorithm from "memorizing"
the training data? The dangers inherent in over-parameterization are typically

343

344 Grossman and Lapedes

illustrated by analogy to the simple numerical problem of fitting a curve to data
points drawn from a simple function. If the fit is with a high degree polynomial then
prediction on new points, i.e. generalization, can be quite bad, although the training
set accuracy is quite good. The wild oscillations in the fitted function, needed to
acheive high training set accuracy, cause poor predictions for new data. When
using neural networks, this problem has two basic aspects. One is how to choose
the optimal architecture (e.g. the number oflayers and units in a feed forward net),
the other is to know when to stop training. Of course, these two aspects are related:
Training a large net to the highest training set accuracy usually causes overfitting.
However, when training is stopped at the "correct" point (where train-set accuracy
is lower), large nets are generalizing as good as, or even better than, small networks
(as observed e.g. in Weigend 1994). This prompts serious consideration of methods
to avoid overparameterization. Various methods to select network architecture or
to decide when to stop training have been suggested. These include: (1) use of
a penalty function (c.!. Weigend et al. 1991). (2) use of cross validation (Stone
1974). (3) minimum description length methods (Rissanen 1989), or (4) "pruning"
methods (e.g. Le Cun et al. 1990).

Although all these methods are effective to various degrees, they all also suffer some
form of non-optimality:

(1) various forms of penalty function have been proposed and results differ between
them. Typically, using a penalty function is generally preferable to not using one.
However, it is not at all clear that there exists one "correct" penalty function and
hence any given penalty function is usually not optimal. (2) Cross validation holds
back part of the training data as a separate valdiation set. It therefore works best in
the situation where use of smaller training sets, and use of relatively small validation
sets, still allows close approximation to the optimal classifier. This is not likely to
be the case in a significantly data-limited regime. (3) MDL methods may be viewed
as a form of penalty function and are subject to the issues in point (1) above. (4)
pruning methods require training a large net, which can be time consuming, and
then "de-tuning" the large network using penalty functions. The issues expressed
in point(l) above apply.

We present a new method to avoid overfitting that uses "noisy" training data where
some of the output classes for a fraction of the data are scrambled. We describe
how to obtain the "noise sensitivity signature" of a classifier (with its learning
algorithm), which is based on the scrambled data. This new methodology is not
computationally cheap, but neither is it prohibitively expensive. It can provide an
alternative to methods (1)-(4) above that (i) can test any complexity parameter of
any classifying algorithm (i.e. the architecture, the stopping criterion etc.) (ii) uses
all the training data, and (iii) is data adaptive, in contrast to fixed penalty/pruning
functions.

2 A DETAILED DESCRIPTION OF THE METHOD

Define a "Learning Algorithm" L(S, P), as any procedure which produces a classifier
f(~), which is a (discrete) function over a given input space X (~ E X). The input
of the learning algorithm L is a Training Set S and a set of parameters P. The
training set S is a set of M examples, each example is a pair of an input instance ~i

Use of Bad Training Data for Better Predictions 345

and the desired output Yi associated with it (i = l..M). We assume that the desired
output represents an unknown "target function" f* which we try to approximate,
i.e. Yi = f*(:ni). The set of parameters P includes all the relevant parameters of the
specific learning algorithm and architecture used. When using a feed-forward neural
network classifier this set usually includes the size of the network, its connectivity
pattern, the distribution of the initial weights and the learning parameters (e.g.
the learning rate and momentum term size in usual back-propagation). Some of
these parameters determine the "complexity" of the classifiers produced by the
learning algorithm, or the set of functions f that are realizable by L. The number
of hidden units in a two layer perceptron, for example, determines the number
of free parameters of the model (the weights) that the learning algorithm will fit
to tbe data (the training set). In general, the output of L can be any classifier:
a neural network, a decision tree, boolean formula etc. The classifier f can also
depend on some random choices, like the initial choice of weights in many network
lenrning algortihm. It can also depend, like in pruning algorithms on any "stopping
crite~'ion" which may also influence its complexity.

2.1 PRODUCING ff
The classification task is given as the training set S. The first step of our method
is to prepare a set of noisy, or partially scrambled realizations of S. We define S:
as one partiCUlar such realization, in which for fraction P of the M examples tne
desired ou.tpu.t values (classes) are changed. In this work we consider only binary
classification tasks, which means that we choose pM examples at random for which
yf = 1 - Yi· For each noise level p and set of n such realizations S; (f.L = l..n) is
prepared, each with a different random choice of scrambled examples. Practically,
8-10 noise levels in the range p = 0.0 - 0.4, with n "" 4 - 10 realizations of S: for
each level are enough. The second step is to apply the learning algorithm to each
of the different S: to produce the corresponding classifiers, which are the boolean
functions ff = L(S;, P).

2.2 NOISE SENSITIVITY MEASURES

Using the set of ff, three quantities are measured for each noise level p:

• The average performance on the original (noise free) training set S. We
define the average noise-free error as

1 n M

Ej(p) = Mn I: L If;(:ni) - Yil (1)
I/o i

And the noise-free pereformance, or score as Qj(p) = 1 - Ej(p).
• In a similar way, we define the average error on the noisy training-sets S::

1 n M

En(P) = Mn L ~ If;(:ni) - yfl (2)
I/o \

Note that the error of each classifier f; is measured on the training set
by which it was created. The noisy-set performance is then defined as
Qn(P) = 1 - En(P)·

346 Grossman and Lapedes

• The average functional distance between classifiers. The functional distance
between two classifiers, or boolean functions, d(J, g) is the probability of
I(z) #- g(z). For a uniform input distribution, it is simply the fraction of
the input space X for which I(z) #- g(z). In order to approximate this
quantity, we can use another set of examples. In contrast with validation
set methods, these examples need not be classified, i.e. we only need a set of
inputs z, without the target outputs y, so we can usually use an "artificial"
set of m random inputs. Although, in principle at least, these z instances
should be taken from the same distribution as the original task examples.
The approximated distance between two classifiers is therefore

1 m

d(J, g) = m ~ I/(Zi) - g(zi)1 (3)
,

We then calculate the average distance, D(p), between the n classifiers It
obtained for each noise level p:

n

D(p) = n(n 2_ 1) L d(J:, I;) (4)
IJ.>V

3 NOISE SENSITIVITY BEHAVIOR

Observing the three quantities Q,(p), Qn(P) and D(p), can we distinguish between
an overparametrized classifier and a "well tuned" one? Can we use this data in order
to choose the best generalizer out of several candidates? Or to find the right point
to stop the learning algorithm L in order to achieve better generalization? Lets
estimate how the plots of Q" Qn and D vs. p, which we call the "Noise Sensitivity
Signature" (NSS) of the algorithm L, look like in several different scenarios.

3.1 D(p)

The average functional distance between realizations, D(p), measures the sensitiv­
ity of the classifier (or the model) to noise. An over-parametrized architecture is
expected to be very sensitive to noise since it is capable of changing its classifica­
tion boundary to learn the scrambled examples. Different realizations of the noisy
training set will therefore result in different classifiers.

On the other hand, an under-parametrized classifier should be stable against at
least a small amount of noise. Its classification boundary will not change when
a few examples change their class. Note, however, that if the training set is not
very "dense", an under-parametrized architecture can still yield different classifiers,
even when trained on a noise free training set (e.g. when using BP with differ­
ent initial weights). Therefore, it may be possible to observe some "background
variance", i.e. non-zero average distance for small (down to zero) noise levels for
under-parametrized classifiers.

Similar considerations apply for the two quantities Q,(p) and Qn(P). When the
training set is large enough, an under-parametrized classifier cannot "follow" all

Use of Bad Training Data for Better Predictions 347

the changed examples. Therefore most of them just add to the training error.
Nevertheless, its performance on the noise free training set, Qf(P), will not change
much. As a result, when increasing the noise level P from zero (where Qf(P) =
Qn(P)), we should find Qf (p) > Qn(P) up to a high noise level - where the decision
boundary has changed enough so the error on the original training set becomes
larg '~r than the error on the actual noisy set. The more parameters our model has,
the sooner (i.e. smaller p) it will switch to the Qf(P) < Qn(P) state. If a network
starts with Qf(P) = Qn(P) and then exhibits a behavior with Qf(P) < Qn(P), this
is a signature of overparameterization.

3.3 THE TRAINING SET

In addition to the set of parameters P and the learning algorithm itself, there
is another important factor in the learning process. This is the training set S.
The dependence on M, the number of examples is evident. When M is not large
enough, the training set does not provide enough data in order to capture the full
complexity of the original task. In other words, there are not enough constraints
- to approximate well the target function f*. Therefore overfitting will occur for
smaller classifier complexity and the optimal network will be smaller.

4 EXPERIMENTAL RESULTS

To demonstrate the possible outcomes of the method described above in several
cases, we have performed the following experiment . A random neural network
"teacher" was created as the target function f*. This is a two layer percept ron
with 20 inputs, 5 hidden units and one output. A set of M random binary input
examples was created and the teacher network was used to classify the training
examples. Namely, a desired output Yi was obtained by recording the output of
the teacher net when input :l:i was presented to the network, and the output was
calculated by applying the usual feed forward dynamincs:

(5)

This binary threshold update rule is applied to each of the network's units j, i.e
the hidden and the output units. The weights of the teacher were chosen from a
uniform distribution [-1,1]. No threshold (bias weights) were used.

The set of scrambled training sets St was produced as explained above and different
network architectures were trained on it to produce the set of classifiers jl1o. The
learning networks are standard two layer networks of sigmoid units, trained by con­
jugate gradient back-propagation, using a quadratic error function with tolerance,
i.e. if the difference between an output of the net and the desired 0 or 1 target is
smaller than the tolerance (taken as 0.2 in our experiment) it does not contribute
to the error. The tolerance is, of course, another parameter which may influences
the complexity of the resulting network, however, in this experiment it is fixed.

The quantities Qf(P), Qn(P) and D(p) were calculated for networks with 1,2,3, .. 7
hidden units (1 hidden unit means just a perceptron, trained with the same error
function). In our terminology, the architecture specification is part of the set of

348 Grossman and Lapedes

Training Set Size
hidden units 400 700 1024

1 0.81 0.04 0.81 0.001) 0.82 0.0011
2 0.81 0.04 0.84 0.05 0.86 0.04
3 0.78 0.02 0.82 0.06 0.90 0.03
4 0.77 0.03 0.81 0.05 0.90 0.03
5 0.74 (0.03 0.79 0.03 0.87 0.04
6 0.74 (0.01 0.80 0.05 0.89 0.03
7 0.71 (0.01 0.76 0.02 0.85 0.05

Table 1: The prediction rate for 1..7 hidden units, averaged on 4 nets that were
trained on the noisefree training set of size M = 400,700,1024 (the standard devi­
ation is given in parenthesis).

parameters P that is input to the learning algorithm L. The goal is to identify the
"correct" architecture according to the behavior of QJ, Qn and D with p.

The experiment was done with three training set sizes M = 400, 700 and 1024.
Another set of m = 1000 random examples was used to calculate D. As an "ex­
ternal control" this set was also classified by the teacher network and was used to
measure the generalization (or prediciton rate) of the different learning networks.
The prediction rate, for the networks trained on the noise free training set (aver­
aged over 4 networks, trained with different random initial weights) is given for
the 1 to 7 hidden unit architectures, for the 3 sizes of M, in Table 1. The noise
sensitivity signatures of three architectures trained with M = 400 (1,2,3 hidden
units) and with M = 1024 examples (2,4,6 units) are shown in Figure 1. Compare
these (representative) results with the expected behaviour of the NSS as described
qualitatively in the previous section.

5 CONCLUSIONS and DISCUSSION

We have introduced a method of testing a learning model (with its learning algo­
rithm) against a learning task given as a finite set of examples, by producing and
characterizing its "noise sensitivity signature". Relying on the experimental results
presented here, and similar results obtained with other (less artificial) learning tasks
and algorithms, we suggest some guidelines for using the NSS for model tuning:

1. If D(p) approaches zero with p -+ 0, or if QJ(p) is significantly better than
Qn(P) for noise levels up to 0.3 or more - the network/model complexity can be
safely inreased.

2. If QJ(p) < Qn(P) already for small levels of noise (say 0.2 or less) - reduce the
network complexity.

3. In more delicate situations: a "good" model will have at least a trace of concavity
in D(p). A clearly convex D(p) probably indicates an over-parametrized model. In
a "good" model choice, Qn (p) will follow Q J (p) closely, from below, up to a high
noise level.

Use of Bad Training Data for Better Predictions 349

04

02 • I I
oL-__ L-__ ~ __ ~ __ ~ __ -L __ ~ __ ~ __ ~ __ ~

o oos 01 015 02 0 25 03 035 04 045

400 IlX~. 2 hrd:len UIlIIs

08

0 6

04

005 01 015 02 025 03 035 0 4 045

1024 exa~9S 4 hidden units

...•... -.•. -.--.... -...... -,----~
......... ,

-" '1
02 ~ I t

oL-__ L-__ ~ __ ~ __ ~ __ -L __ ~ __ ~ __ ~ __ ~

o 005 01 015 02 025 03 0 35 04 04~' oos 0 1 015 0, 025 03 035 04 045

08

O~

04 • 04

I
i

02 • I

OL_--~--~--~--~---L--~--~--~--~ °0L---O~OS---0~1---0~15--~02--~02~5---0~3 ---0~35---0~4--~045 o 005 01 015 02 025 03 OJ5 04 04~

Figure 1: The signatures (Q and D vs. p) of networks with 1,2,3 hidden units (top
to bottom) trained on M=400 examples (left), and networks with 2,4,6 hidden units
trained on M=1024 examples. The (noisy) training set score Qn(P) is plotted with
full line, the noise free score Qf(P) with dotted line, and the average functional
distance D(p) with error bars (representing the standard deviation of the distance).

350 Grossman and Lapedes

5.1 Advanatages of the Method

1. The method uses all the data for training. Therefore we can extract all the
available information. Unlike validation set methods - there is no need to spare
part of the examples for testing (note that classified examples are not needed for
the functional distance estimation). This may be an important advantage when
the data is limited. As the experiment presented here shows: taking 300 examples
out of the 1024 given, may result in choosing a smaller network that will give
inferior prediction (see table 1). Using "delete-1 cross-validation" will minimize
this problem but will need at least as much computation as the NSS calculation in
order to achieve reliable prediction estimation.

2. It is an "external" method, i.e. independent of the classifier and the training
algorithm. It can be used with neural nets, decision trees, boolean circuits etc. It
can evaluate different classifiers, algorithms or stopping/prunning criteria.

5.2 Disadvantages

1. Computationally expensive (but not prohibitively so). In principle one can use
just a few noise levels to reduce computational cost.

2. Presently requires a subjective decision in order to identify the signature, unlike
cross-validation methods which produce one number. In some situations, the noise
sensitivity signature gives no clear distinction between similar architectures. In
these cases, however, there is almost no difference in their generalization rate.

Acknowledgements

We thank David Wolpert, Michael Perrone and Jerom Friedman for many iluminat­
ing discussions and usefull comments. We also thank Rob Farber for his invaluable
help with software and for his assistance with the Connection Machine.

Referencess

Le Cun Y., Denker J.S. and Solla S. (1990), in Adv. in NIPS 2, Touretzky D.S. ed.
(Morgan Kaufmann 1990) 598.

Rissanen J. (1989), Stochastic Complezity in Statistical Inquiry (World Scientific
1989).

Stone M. (1974), J.Roy.Statist.Soc.Ser.B 36 (1974) 11I.

Wiegend A.S. (1994), in the Proc. of the 1993 Connectionist Models Summer School,
edited by M.C. Mozer, P. Smolensky, D.S. Touretzky, J.L. Elman and A.S. Weigend,
pp. 335-342 (Erlbaum Associates, Hillsdale NJ, 1994).

Wiegend A.S., Rummelhart D. and Huberman B.A. (1991), in Adv. in NIPS 3,
Lippmann et al. eds. (Morgen Kaufmann 1991) 875.

