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Abstract 

We built a high-speed, digital mean-field Boltzmann chip and SBus 
board for general problems in constraint satjsfaction and learning. 
Each chip has 32 neural processors and 4 weight update processors, 
supporting an arbitrary topology of up to 160 functional neurons. 
On-chip learning is at a theoretical maximum rate of 3.5 x 108 con­
nection updates/sec; recall is 12000 patterns/sec for typical condi­
tions. The chip's high speed is due to parallel computation of inner 
products, limited (but adequate) precision for weights and activa­
tions (5 bits), fast clock (125 MHz), and several design insights. 
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1 INTRODUCTION 

A vast number of important problems can be cast into a form of constraint satisfac­
tion. A crucial difficulty when solving such problems is the fact that there are local 
minima in the solution space, and hence simple gradient descent methods rarely suf­
fice. Simulated annealing via the Boltzmann algorithm (BA) is attractive because it 
can avoid local minima better than many other methods (Aarts and Korst, 1989). 
It is well known that the problem of learning also generally has local minima in 
weight (parameter) space; a Boltzmann algorithm has been developed for learning 
which is effective at avoiding local minima (Ackley and Hinton, 1985). The BA 
has not received extensive attention, however, in part because of its slow operation 
which is due to the annealing stages in which the network is allowed to slowly relax 
into a state of low error. Consequently there is a great need for fast and efficient 
special purpose VLSI hardware for implementing the algorithm. Analog Boltzmann 
chips have been described by Alspector, Jayakumar and Luna (1992) and by Arima 
et al. (1990); both implement stochastic BA. Our digital chip is the first to imple­
ment the deterministic mean field BA algorithm (Hinton, 1989), and although its 
raw throughput is somewhat lower than the analog chips just mentioned, ours has 
unique benefits in capacity, ease of interfacing and scalability (Burr, 1991, 1992). 

2 BOLTZMANN THEORY 

The problems of constraint satisfaction and of learning are unified through the 
Boltzmann learning algorithm. Given a partial pattern and a set of constraints, 
the BA completes the pattern by means of annealing (gradually lowering a com­
putational "temperature" until the lowest energy state is found) - an example 
of constraint satisfaction. Over a set of training patterns, the learning algorithm 
modifies the constraints to model the relationships in the data. 

2.1 CONSTRAINT SATISFACTION 

A general constraint satisfaction problem over variables Xi (e.g., neural activations) 
is to find the set Xi that minimize a global energy function E = -~ Lij WijXiXj, 

where Wij are the (symmetric) connection weights between neurons i and j and 
represent the problem constraints. 

There are two versions of the BA approach to minimizing E. In one version - the 
stochastic BA - each binary neuron Xi E {-I, I} is polled randomly, independently 
and repeatedly, and its state is given a candidate perturbation. The probability of 
acceptance of this perturbation depends upon the amount of the energy change 
and the temperature. Early in the annealing schedule (Le., at high temperature) 
the probability of acceptance is nearly independent of the change in energy; late in 
annealing (Le., at low temperature), candidate changes that lead to lower energy 
are accepted with higher probability. 

In the deterministic mean field BA, each continuous valued neuron (-1 < Xi ::; 

1) is updated simultaneously and in parallel, its new activation is set to Xi = 
I(Lj WijXj), where 10 is a monotonic non-linearity, typically a sigmoid which 
corresponds to a stochastic unit at a given temperature (assuming independent 
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inputs). The inverse slope of the non-linearity is proportional to the temperature; at 
the end of the anneal the slope is very high and f ( .) is effectively a step function. It 
has been shown that if certain non-restrictive assump'tions hold, and if the annealing 
schedule is sufficiently slow, then the final binary states (at 0 temperature) will be 
those of minimum E (Hinton, 1989, Peterson and Hartman, 1989). 

2.2 LEARNING 

The problem of Boltzmann learning is the following: given a network topology 
of input and output neurons, interconnected by hidden neurons, and given a set of 
training patterns (input and desired output), find a set of weights that leads to high 
probability of a desired output activations for the corresponding input activations. 
In the Boltzmann algorithm such learning is achieved using two main phases -
the Teacher phase and the Student phase - followed by the actual Weight update. 
During the Teacher phase the network is annealed with the inputs and outputs 
clamped (held at the values provided by the omniscient teacher). During the anneal 
of the Student phase, only the inputs are clamped - the outputs are allowed to 
vary. The weights are updated according to: 

D..Wij = €( (x!x;) - (x:xj)) (1) 

where € is a learning rate and (x~x;) the coactivations of neurons i and j at the end 
of the Teacher phase and (x:xj) in at the end of the Student phase (Ackley and 
Hinton, 1985). Hinton (1989) has shown that Eq. 1 effectively performs gradient 
descent on the cross-entropy distance between the probability of a state in the 
Teacher (clamped) and the Student (free-running) phases. 

Recent simulations by Galland (1993) have shown limitations of the deterministic 
BA for learning in networks having hidden units directly connected to other hidden 
units. While his results do not cast doubt on the deterministic BA for constraint 
satisfaction, they do imply that the deterministic BA for learning is most successful 
in networks of a single hidden layer. Fortunately, with enough hidden units this 
topology has the expressive power to represent all but the most pathological input­
output mappings. 

3 FUNCTIONAL DESIGN AND CHIP OPERATION 

Figure 1 shows the functional block diagram of our chip. The most important units 
are the Weight memory, Neural processors, Weight update processors, Sigmoid and 
Rotating Activation Storage (RAS), and their operation are best explained in terms 
of constraint satisfaction and learning. 

3.1 CONSTRAINT SATISFACTION 

For constraint satisfaction, the weights (constraints) are loaded into the Weight 
memory, the form of the transfer function is loaded into the Sigmoid Unit, and 
the values and duration of the annealing temperatures (the annealing schedule) are 
loaded into the Temperature Unit. Then an input pattern is loaded into a bank 
of the RAS to be annealed. Such an anneal occurs as follows: At an initial high 
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temperature, the 32 Neural processors compute Xi = Lj WijXj in parallel for the 
hidden units. A 4 x multiplexing here permits networks of up to 128 neurons to 
be annealed, with the remaining 32 neurons used as (non-annealed) inputs. Thus 
our chip supports networks of up to 160 neurons total. These activations are then 
stored in the Neural Processor Latch and then passed sequentially to the Sigmoid 
unit, where they are multiplied by the reciprocal of the instantaneous temperature. 
This Sigmoid unit employs a lookup table to convert the inputs to neural outputs 
by means of non-linearity f(·). These outputs are sequentially loaded back into the 
activation store. The temperature is lowered (according to the annealing sched­
ule), and the new activations are calculated as before, and so on. The final set of 
activations Xi (i.e., at the lowest temperature) represent the solution. 

Rotating 
Activation 

1 

Sigmoid 

r-----t .... 4 weight update processors 

weight update cache 

Weight 
memory 

32 Neural Processors (NP) 

Figure 1: Boltzmann VLSI block diagram. The rotating activation storage (black) 
consists of three banks, which for learning problems contain the last pattern (al­
ready annealed), the current pattern (being annealed) and the next pattern (to be 
annealed) read onto the chip through the external interface. 

3.2 LEARNING 

When the chip is used for learning, the weight memory is initialized with random 
weights and the first, second and third training patterns are loaded into the RAS. 
The three-bank RAS is crucial for our chip's speed because it allows a three-fold 
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concurrency: 1) a current pattern of activations is annealed, while 2) the annealed 
last pattern is used to update the weights, while 3) the next pattern is being loaded 
from off-chip. The three banks form a circular buffer, each with a Student and a 
Teacher activation store. 

During the Teacher anneal phase (for the current pattern), activations of the input 
and output neurons are held at the values given by the teacher, and the values of 
the hidden units found by annealing (as described in the previous subsection). After 
the last such annealling step (Le., at the lowest temperature), the final activations 
are left in the Teacher activation store - the Teacher phase is then complete. The 
annealing schedule is then reset to its initial temperature, and the above process is 
then repeated for the Student phase; here only the input activations are clamped 
to their values and the outputs are free to vary. At the end of this Student anneal, 
the final activations are left in the Student activation storage. 

In steady state, the MUX then rotates the storage banks of the RAS such that the 
next, current, and last banks are now called the current, last, and next, respectively. 
To update the weights, the activations in the Student and Teacher storage bank 
for the pattern just annealed (now called the "last" pattern) are sent to the four 
Weight update processors, along with the weights themselves. The Weight update 
processors compute the updated weights according to Eq. 1, and write them back 
to the Weight memory. While such weight update is occuring for the last pattern, 
the current pattern is annealing and the next pattern is being loaded from off chip. 

After the chip has been trained with all of the patterns, it is ready for use in 
recall. During recall, a test pattern is loaded to the input units of an activation 
bank (Student side), the machine performs a Student anneal and the final output 
activations are placed in the Student activation store, then read off the chip to 
the host computer as the result. In a constraint satisfaction problem, we merely 
download the weights (constraints) and perform a Student anneal. 

4 HARDWARE IMPLEMENTATION 

Figure 2 shows the chip die. The four main blocks of the Weight memory are at 
the top, surrounded by 32 Neural processors (above and below this memory), and 
four Weight update processors (between the memory banks). The three banks of 
the Rotating Activation Store are at the bottom of the chip. The Sigmoid processor 
is at the lower left, and instruction cache and external interface at the lower right. 
Most of the rest of the chip consists of clocking and control circuitry. 

4.1 VLSI 

The chip mixes dynamic and static memory on the same die. The Activation and 
Temperature memories are static RAM (which needs no refresh circuitry) while the 
Weight memory is dynamic (for area efficiency) . The system clock is distributed to 
various local clock drivers in order to reduce the global clock capacitance and to se­
lectively disable the clocks in inactive subsystems for reducing power consumption. 
Each functional block has its own finite state machine control which communicates 
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Figure 2: Boltzmann VLSI chip die. 

asynchronously. For diagnostic purposes, the State Machines and counters are ob­
servable through the External Interface. There is a Single Step mode which has 
been very useful in verifying sub-system performance. Figure 3 shows the power 
dissipation throughout a range of frequencies. Note that the power is less than 
2 Watts throughout. 

Extensive testing of the first silicon revealed two main classes of chip error: electrical 
and circuit. Most of the electrical problems can be traced to fast edge rates on 
the DRAM sense-amp equalization control signals, which cause inductive voltage 
transients on the power supply rails of roughly 1 Volt. This appears to be at least 
partly responsible for the occasional loss of data in dynamic storage nodes. There 
also seems to be insufficient latchup protection in the pads, which is aggravated by 
the on-chip voltage surges. The circuit problems can be traced to having to modify 
the circuits used in the layout for full chip simulation. 

In light of these problems, we have simulated the circuit in great detail in order to 
explore possible corrective steps. We have modified the design to provide improved 
electrical isolation, resized drivers and reduced the logic depth in several compo­
nents. These corrections solve the problems in simulation, and give us confidence 
that the next fab run will yield a fully working chip. 

4.2 BOARD AND SBus INTERFACE 

An SBus interface board was developed to allow the Boltzmann chip to be used 
with a SparcStation host. The registers and memory in the chip can be memory 
mapped so that they are directly accessible to user software. The board can support 
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Table 1: Boltzmann VLSI chip specifications 

Architecture 
Size 
Neurons 
Weight memory 
Activation store 
Technology 
Transistors 
Pins 
Clock 
I/O rate 
Learning rate 
Recall rate 
Power dissipation 

n-Iayer, arbitrary intercoItnnections 
9.5 mm x 9.8 mm 
32 processors --+ 160 virtual 
20,480 5-bit weights (on chip) 
3 banks, 160 teacher & 160 student values in each 
1. 2 11m CMOS 
400,000 
84 
125 MHz (on chip) 
3 x 107 activations/sec (sustained) 
3.5 x 108 connection updates/sec (on chip) 
12000 patterns/sec 
:::;2 Watts (see Figure 3) 

20-bit transfers to the chip at a sustained rate in excess of 8 Mbytes/second. The 
board uses reconfigurable Xilinx FPGAs (field-programmable gate arrays) to allow 
flexibility for testing with and without the chip installed. 

4.3 SOFTWARE 

The chip control program is written in C (roughly 1,500 lines of code) and commu­
nicates to the Boltzmann interface card through the virtual memory. The user can 
read/write to all activation and weight memory locations and all functions of the 
chip (learning, recall, annealing, etc.) can thus be specified in software. 

5 CONCLUSIONS AND FUTURE WORK 

The chip was designed so that interchip communications could be easily incorpo­
rated by means of high-speed parallel busses. The SBus board, interface and soft­
ware described above will require only minor changes to incorporate a multi-chip 
module (MCM) containing several such chips (for instance 16). There is minimal 

2 

1. 75 
til 1.5 .w 
.w 1. 25 111 
2: 1 -~ 

0.75 Q) 

~ 
0.5 0 

0. 
0.25 

0 

i I ---- i ,--f--T i , 

i ; I , i , 
! i i 

I 

i 
I 

i , 
I 

50 60 70 80 90 100 110 
frequency, MHz 

Figure 3: Power dissipation of the chip during full operation at 5 Volts. 
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inter chip communication delay « 3% overhead), and thus MCM versions of our 
system promise to be extremely powerful learning systems for large neural network 
problems (Murrayet al., 1992). 
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