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Abstract 

In this paper, it is shown that the conventional back-propagation 
(BPP) algorithm for neural network regression is robust to lever­
ages (data with :n corrupted), but not to outliers (data with y 
corrupted). A robust model is to model the error as a mixture of 
normal distribution. The influence function for this mixture model 
is calculated and the condition for the model to be robust to outliers 
is given. EM algorithm [5] is used to estimate the parameter. The 
usefulness of model selection criteria is also discussed. Illustrative 
simulations are performed. 

1 Introduction 

In neural network research, the back-propagation (BPP) algorithm is the most 
popular algorithm. In the regression problem y = 7](:n, w) + £, in which 7](:n, 8) 
denote a neural network with weight 8, the algorithm is equivalent to modeling 
the error as identically independently normally distributed (i.i.d.), and using the 
maximum likelihood method to estimate the parameter [13]. Howerer, the training 
data set may contain surprising data points either due to errors in y space (outliers) 
when the response vectors ys of these data points are far away from the underlying 
function surface, or due to errors in :n space (leverages), when the the feature vectors 
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xs of these data points are far away from the mass of the feature vectors of the rest 
of the data points. These abnormal data points may be able to cause the parameter 
estimation biased towards them. A robust algorithm or robust model is the one 
that overcome the influence of the abnormal data points. 

A lot of work has been done in linear robust regression [8, 6, 3]. In neural network. 
it is generally believed that the role of sigmoidal function of the basic computing 
unit in the neural net has some significance in the robustness of the neural net 
to outliers and leverages. In this article, we investigate this more thoroughly. It 
turns out the conventional normal model (BPP algorithm) is robust to leverages 
due to sigmoidal property of the neurons, but not to outliers (section 2). From the 
Bayesian point of view [2], modeling the error as a mixture of normal distributions 
with different variances, with flat prior distribution on the variances, is more robust. 
The influence function for this mixture model is calculated and condition for the 
model to be robust to outliers is given (section 3.1). An efficient algorithm for 
parameter estimation in this situation is the EM algorithm [5] (section 3.2). In 
section 3.3, we discuss a choice of prior and its properties. In order to choose 
among different probability models or different forms of priors, and neural nets 
with different architecture, we discuss the model selection criteria in section 4. 
Illustrative simulations on the choice of prior, or the t distribution model, and the 
normal distribution model are given. Model selection statistics, is used to choose 
the degree of freedom oft distribution, different neural network, and choose between 
a t model and a normal model (section 4 and 5). 

2 Issue Of Robustness In Normal Model For Neural Net 
Regression 

One way to think of the outliers and leverages is to regard them as a data per­
turbation on the data distribution of the good data. Remember that a estimated 
parameter T = T(F) is an implicit function of the underlying data distribution F. 
To evaluate the influence of T by this distribution perturbation, we use the influence 
function [6] of estimator T at point z = (x, y) with data distribution F, which is 
defined as 

IF(T ) -1· T((1 - t)F + t~z) - T(F) 
, z, F - Imt -+ 0+ ----.:'-'------'------'-----'----'-

t 
(1 ) 

in which ~:r: has mass 1 at x. 1 This definition is equivalent to a definition of deriva­
tive with respect to F except what we are dealing now is the derivative of functional. 
This definition gives the amount of change in the estimator T with respect to a dis­
tribution perturbation t~z at point z = (x, y). For a robust estimation of the 
parameter, we expect the estimated parameter does not change significantly with 
respect to a data perturbation. In another word, the influence function is bounded 
for a robust estimation. 

Denote the conditional probability model of y given x as i.i.d. f(ylx,8) with param­
eter 8. If the error function is the negative log-likelihood plus or not plus a penalty 
term, then a general property of the influence function of the estimated parameter 
B, is IF(B, (Xi, Yi), F) ex \71l1ogf(ydxi, B) (for proof, see [11]). Denote the neural 

lThe probability density of the distribution D.", is 6(y - 2:). 
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net, with h hidden units and the dimension of the output being one (dy = 1), as 

h 

17(:z:,8) = L akO"( Wk:Z: + tk) (2) 
k=l 

in which O"(:z:) is the sigmoidal function or 1/(1 + exp(:z:)) and 8 = {ak, Wk, td. 
For a normal model, f(yl:z:, 8, 0") = JV(Yj 17(:Z:, 8), 0") in which .N'(y; c, 0") denotes dy-

variate normal distribution with mean c and covariance matrix 0"2 I. Straightforward 
calculation yield (dy = 1) 

( 
(O"(Wi:z:+ti))hXl ) 

IF(8, (:Z:i' Yi), F) <X (y - 17(X, 8)) (O,:O"',(w:x + t~)x ) (3) 
aiO" (WiX + td hx 1 

Since y with a large value makes the influence function unbounded, thus the normal 
model or the back-propagation algorithm for regression is not robust to outliers. 
Since 0"' (wx +t) tends to be zero for x that is far away from the projection wx +i = 
0, the influence function is bounded for a abnormal x, or the normal model for 
regression is robust to leverages. This analysis can be easily extented to a neural 
net with multiple hidden layers and multiple outputs. Since the neural net model 
is robust to leverages, we shall concentrate on the discussion of robustness with 
respect to outliers afterwards. 

3 Robust Probability Model And Parameter Estimation 

3.1 Mixture Model 

One method for the robust estimation is by the Bayesian analysis [2J. Since our 
goal is to overcome the influence of outliers in the data set, we model the error as 
a mixture of normal distributions, or, 

f(yl:z:,8,0") = J f(ylx,8,q,0")7r(q)dq (4) 

with f(ylx, 8, q, 0") = N'(y; 17(x, 8), 0"2 /q) and the prior distribution on q is denoted 
as 7r(q). Intuitively, a mixture of different normal distributions with different qs, or 
different variances, somehow conveys the idea that a data point is generated from 
a normal distribution with large variance, which can be considered to be outliers, 
or from that with small variance, which can be considered to be good data. This 
requires 7r(q) to be flat to accommodate the abnormal data points. A case of 
extreme non-flat prior is to choose 7r(q) = 6(q - 1), which will make f(ylx, 8, 0") to 
be a normal distribution model. This model has been discussed in previous section 
and it is not robust to outliers. 

Calculation yields (dy = 1) the influence function as 

~ ( (O"(ti\X+ti))hXl ) 
IF(8, (x, y), F) <X (y - 17(x, 8)) w ( a:a',( wix + t~)x ) (5) 

ai a (Wi X + td h x 1 
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in which 

(6) 

where expectation is taken with respect to the posterior distribution of q, or 
7r(qly x 0- 8) = f(ylx,9,q,u)'1r(q) For the influence function to be bounded for a y , , , f(ylx,9,u) 

with large value, (y - 7](x, 8))w must be bounded. This is the condition on 7r(q) 
when the distribution f(ylx, 8, 0-) is robust to outliers. It can be noticed that the 
mixture model is robust to leverages for the same reason as in the case of the normal 
distribution model. 

3.2 Algorithm For Parameter Estimation 

An efficient parameter estimation method for the model in equation 4 is the EM 
algorithm [5]. In EM algorithm, a portion ofthe parameter is regarded as the miss­
ing observations. During the estimation, these missing observations are estimated 
through previous estimated parameter of the model. Afterwards, these estimated 
missing observations are combined with the real observations to estimate the pa­
rameter of the model. In our mixture model, we shall regard {qi, i = 1, ... n} as the 
missing observations. Denote w = {Xi, Yi, i = 1, ... n} as the training data set. 

It is a straight forward calculation for the EM algorithm (see Liu, 1993b) once one 
w~it~ ~o~n the full probability f( {Yi, qdl{xd, 0-, 8). The algorithm is equivalent to 
mmimIzmg 

n 

L w~S-l)(Yi - 7](Xi' 8))2 (7) 
i=l 

and estimating 0- at the s step by (0-2)(S) = ~ l:~l W~!-l)(Yi - 7](Xi' 8(5»))2. 

If we use f(ylx, 8, cr) oc exp( -p(IY-7]( x, 8) 110-)) and denote 1/J(z) = p' (z), calculation 

yield, w = E [qly, x, 0-, 8] = ""~z) Iz=IY-71(X,9)I/u' This has exact the same choice of 

weight wr S
-

1) as in the iterative reweighted regression algorithm [7]. What we have 
here, different from the work of Holland et al., is that we link the EM algorithm 
with the iterative reweighted algorithm, and also extend the algorithm to a much 
more general situation. The weighting Wi provides a measure of the goodness of a 
data point. Equation 7 estimates the parameters based on the portion of the data 
that are good. A penalization term on 8 can also be included in equation 7. 2 

3.3 Choice Of Prior 

There are a lot choices of prior distribution 7r(q) (for discussion, see [11]). We 
only discuss the choice IIq '" X~, i.e., a chi distribution with II degree of freedom. 
By intergrating equation 4 f(Ylx 8 0-) = r'( v+dl/)/2) (1 + (Y-71(x,9»2)-(Il+dl/)/2. 

, " r(V/2)(q2V'1r)ctl//2 vu 2 

It is a dy variate t distribution with II degree of freedom, mean 0 and covariance 

matrix cr2 I. Calculation yields, E [q ly, x, 0-, 8] = v + (Y-~tx~9»)27u2 The t distribution 

2 A prior on 8 can be 1r(8) ex: e- a (A ,9)/(2cr 2
), which yields a additional penalization term 

0:( A, 8) in equation 7, in which A denotes a tunning parameters of the penalization. 
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becomes a normal distribution as 1.1 goes to infinity. For finite 1.1, it has heavier tail 
than the normal distribution and thus is appropriate for regression with to outliers. 
Actually the condition for robustness, (y - 1J(x,8))w being bounded for a y with 

large value, is satisfied. The weighting w ex: 1/{1 + [Y -1J(x,8)f /a 2 } balances the 

influence of the ys with large values, achieving robustness with respect to outliers 
for the t distribution. 

4 Model Selection Criteria 

The meaning of model is in a broad sense. It can be the degree of penalization, or 
a probability model, or a neural net architecture, or the combination of the above. 
A lot of work has been done in model selection [1, 17, 15, 4, 13, 14, 10, 12] . The 
choice of a model is based on its prediction ability. A natural choice is the expected 
negative log-likelihood. This is equivalent to using the Kullback-Leibler measure [9] 
for model selection, or -E [logf(ylx, model)] + E [log f(ylx, true model)]. This has 
problem if the model can not be normalized as in the case of a improper prior. 
Equation 7 implies that we can use 

n 
1 ,,"",* A 2 Tm(w) = - Lt Wi (Yi - 1J(Xi' (Ld) 

neff i=l 

(8) 

as the cross-validation [16] assessment of model m, in which neff = Ei wi, wi is 

the convergence limit of w~s), or equation 6, and 8_i is the estimator of 8 with 
ith data deleted from the full data set. The successfulness of the cross-validation 
method depends on a robust parameter estimation. The cross-validation method is 
to calculate the average prediction error on a data based on the rest of the data in 
the training data set. In the presence of outliers, predicting an outlier based on the 
rest of the data, is simply not meaningful in the evaluation of the model. Equation 
8 takes consideration of the outliers. Using result from [10], we can show [11] with 
penalization term 0:(>',8), 

1 ~ * A 2 Tm(w) ~ -Ltwi (Yi-1J(Xi,8)) 
neff i=1 

(9) 

+ ~ t wirigJ [2: wi (gigJ - ri(i) + 'VI) 'VI)O:(>', 8)]-1 rigi (10) 
eff i=1 i 

in which gi = 'V1)1J(xi,8), (i = 'V1)'V~1J(xi,8) and ri = Yi -1J(xi,8). Thus if the 
models in comparison contains a improper prior, the above model selection statistics 
can be used. 

If the models in comparison have close forms of f(ylx, 8, u), the average negative 
log-likelihood can be used as the model selection criteria. In Liu's work [10], an 
approximation form for the unbiased estimation of expected negative log-likelihood 
was provided. If we use the negative log-likelihood plus a penalty term 0:(>.,8) as 
the parameter optimization criteria, the model selection statistics is 

1 ~ A 1 ~ A 1 -1 
Tm(w) = -- Ltlogf(Yilxi,8_i) ~ -- Ltlogf(Yilxi,8) + -Tr(C D) 

n . n n 
~=1 i=1 

(11) 
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10 which C E~=l V' (1 log f(Yi lXi, B)V'~ log f(Yi lXi, B) 
and D = - E~=l V'(1V'pogf(Yilxi,B) + V'(1\7~a().,8). The optimal model is the 
one that minimizes this statistics. If the true underlying distribution is the normal 
distribution model and there is no penalization terms, it is easy to prove C -+ D as 
n goes to infinite. Then the statistics becomes AIC [1]. 
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Figure 1: BPP fit to data set with leverages, and comparison with BPP fit to the 
data set without the leverages. An one hidden layer neural net with 4 hidden units, 
is fitted to a data set with 10 leverage, which are on the right side of X = 3.5, by 
using the conventional BPP method. The main body of the data (90 data points) 
was generated from Y = sin(x) + € with € '"V .V(€j 0, a = 0.2). It can be noticed 
that the fit on the part of good data points was not dramatically influenced by the 
leverages. This verified our theoretical result about the robustness of a neural net 
with respect to leverages 

5 Illustrative Simulations 

For the results shown in figure 2 and 3, the training data set contains 93 data point 
from Y == sin( x) + € and seven Y values (outliers) randomly generated from region [1, 
2), in which € '" .:\:'( €j 0, a = 0.2). The neural net we use is of the form in equation 
2. Denote h as the number of hidden units in the neural net. The caption of each 
figure (1, 2, 3) explains the usefulness of the parameter estimation algorithm and 
the model selection. 
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Figure 2: Model selection statistics Tm for fits to data set with outliers, tests on 
a independent data set with 1000 data points from y = sin(:z:) + €, where € '" 

JV(f.; 0, U = 0.2). it can be seen that Tm statistics is in consistent with the error on 
the test data set. The Tm statistics favors t model with small /.I than for the normal 
distribution models. 
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Figure 3: Fits to data set with outliers, and comparison with BPP fit to the data 
set without the outliers. The best fit in the four BPP fits (h = 3), according to Tm 
statistics, was influenced by the outliers, tending to shift upwards. Although the 
distribution is not a t distribution at all, the best fit by the EM algorithm under 
the t model (/.I = 3, h = 3), also according to Tm statistics, gives better result than 
the BPP fit, actually is almost the same as the BPP fit (h = 3) to the training data 
set without the outliers. This is due to the fact that a t distribution has a heavy 
tail to accommodate the outliers 
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