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Abstract 

The fundamental backpropagation (BP) algorithm for training ar­
tificial neural networks is cast as a deterministic nonmonotone per­
turbed gradient method. Under certain natural assumptions, such 
as the series of learning rates diverging while the series of their 
squares converging, it is established that every accumulation point 
of the online BP iterates is a stationary point of the BP error func­
tion. The results presented cover serial and parallel online BP, 
modified BP with a momentum term, and BP with weight decay. 

1 INTRODUCTION 

We regard training artificial neural networks as an unconstrained minimization 
problem 

N 

min f(x) := ~ h(x) 
xERn ~ 

j=l 

(1) 

where h : ~n --+ ~, j = 1, ... , N are continuously differentiable functions from the 
n-dimensional real space ~n to the real numbers~. Each function Ii represents the 
error associated with the j-th training example, and N is the number of examples 
in the training set. The n-dimensional variable space here is that of the weights 
associated with the arcs of the neural network and the thresholds of the hidden and 
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output units. For an explicit description of f(x) see (Mangasarian, 1993). We note 
that our convergence results are equally applicable to any other form of the error 
function, provided that it is smooth. 

BP (Rumelhart,Hinton & Williams, 1986; Khanna, 1989) has long been successfully 
used by the artificial intelligence community for training artificial neural networks. 
Curiously, there seems to be no published deterministic convergence results for this 
method. The primary reason for this is the nonmonotonic nature of the process. 
Every iteration of online BP is a step in the direction of negative gradient of a partial 
error function associated with a single training example, e.g. Ii (x) in (1). It is clear 
that there is no guarantee that such a step will decrease the full objective function 
f( x), which is the sum of the errors for all the training examples . Therefore a single 
iteration of BP may, in fact, increase rather than decrease the objective function 
f( x) we are trying to minimize. This difficulty makes convergence analysis of BP 
a challenging problem that has currently attracted interest of many researchers 
(Mangasarian & Solodov, 1994; Gaivoronski, 1994; Grippo, 1994; Luo & Tseng, 
1994; White, 1989) . 

By using stochastic approximation ideas (Kashyap,Blaydon & Fu, 1970; Ermoliev & 
Wets, 1988), White (White, 1989) has shown that, under certain stochastic assump­
tions, the sequence of weights generated by BP either diverges or converges almost 
surely to a point that is a stationary point of the error function. More recently, 
Gaivoronski obtained stronger stochastic results (Gaivoronski, 1994). It is worth 
noting that even if the data is assumed to be deterministic, the best that stochastic 
analysis can do is to establish convergence of certain sequences with probability 
one. This means that convergence is not guaranteed. Indeed, there may exist some 
noise patterns for which the algorithm diverges, even though this event is claimed 
to be unlikely. 

By contrast, our approach is purely deterministic. In particular, we show that 
online BP can be viewed as an ordinary perturbed nonmonotone gradient-type 
algorithm for unconstrained optimization (Section 3) . We note in the passing, that 
the term gradient descent which is widely used in the backpropagation and neural 
networks literature is incorrect. From an optimization point of view, online BP 
is not a descent method, because there is no guaranteed decrease in the objective 
function at each step. We thus prefer to refer to it as a nonmonotone perturbed 
gradient algorithm. 

We give a convergence result for a serial (Algorithm 2.1), a parallel (Algorithm 2.2) 
BP, a modified BP with a momentum term, and BP with weight decay. To the best 
of our knowledge, there is no published convergence analysis, either stochastic or 
deterministic, for the latter three versions of BP. The proposed parallel algorithm is 
an attempt to accelerate convergence of BP which is generally known to be relatively 
slow. 

2 CONVERGENCE OF THE BACKPROPAGATION 
ALGORITHM AND ITS MODIFICATIONS 

We now turn our attention to the classical BP algorithm for training feedforward 
artificial neural networks with one layer of hidden units (Rumelhart,Hinton & 
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Williams, 1986; Khanna, 1989). Throughout our analysis the number of hidden 
units is assumed to be fixed. The choice of network topology is a separate issue 
that is not addressed in this work. For some methods for choosing the number of 
hidden units see (Courrien, 1993; Arai, 1993). 

We now summarize our notation. 

N : Nonnegative integer denoting number of examples in the training set. 

i = 1,2, ... : Index number of major iterations (epochs) of BP. Each major itera­
tion consists of going through the entire set of error functions !1(x), ... , fN(X). 

j = 1, ... ,N : Index of minor iterations. Each minor iteration j consists of a step 
in the direction of the negative gradient - \7 fmU)(zi,j) and a momentum step. Here 
m(j) is an element of the permuted set {I, ... , N}, and zi,j is defined immediately 
below. Note that if the training set is randomly permuted after every epoch, the 
map m(·) depends on the index i. For simplicity, we skip this dependence in our 
notation. 

xi : Iterate in ~n of major iteration (epoch) i = 1,2, .... 

zi,; : Iterate in ~n of minor iteration j = 1, ... , N, within major iteration i 
1,2, .... Iterates zi,j can be thought of as elements of a matrix with N columns and 
infinite number of rows, with row i corresponding to the i-th epoch of BP. 

By 1}i we shall denote the learning rate (the coefficient multiplying the gradient), 
and by (ki the momentum rate (the coefficient multiplying the momentum term). 
For simplicity we shall assume that the learning and momentum rates remain fixed 
within each major iteration. In a manner similar to that of conjugate gradients 
(Polyak, 1987) we reset the momentum term to zero periodically. 

Algorithm 2.1. Serial Online BP with a Momentum Term. 
Start with any xO E ~n. Having xi, stop if \7 f(x i ) = 0, else compute xi+l as 
follows: 

zi,j+l = zi,j - TJi \7 fmu)(i,j) + aif1zi,j, j = 1, ... , N 

xi+l = zi,N+l 

where 

if j = 1 
otherwise 

(2) 

(3) 

(4) 

(5) 

Remark 2.1. Note that the stopping criterion of this algorithm is typically that 
used in first order optimization methods, and is not explicitly related to the abil­
ity of the neural network to generalize. However, since we are concerned with 
convergence properties of BP as a numerical algorithm, this stopping criterion is 
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justified. Another point related to the issue of generalization versus convergence is 
the following. Our analysis allows the use of a weight decay term in the objective 
function (Hinton, 1986; Weigend,Huberman & Rumelhart, 1990) which often yields 
a network with better generalization properties. In the latter case the minimization 
problem becomes 

N 

min I(x) := ~ hex) + All x l1 2 
xElRn L-

i=l 

(6) 

where A is a small positive scaling factor. 

Remark 2.2. The choice of C¥i = 0 reduces Algorithm 2.1 to the original BP 
without a momentum term. 

Remark 2.3. We can easily handle the "mini-batch" methods (M!2l11er, 1992) by 
merely redefining the meaning of the partial error function Ii to represent the error 
associated with a subset of training examples. Thus "mini-batch" methods also fall 
within our framework. 

We next present a parallel modification of BP. Suppose we have k parallel pro­
cessors, k 2: 1. We consider a partition of the set {l, ... , N} into the subsets 
J" 1 = 1, ... ,k, so that each example is assigned to at least one processor. Let 
N, be the cardinality of the corresponding set J,. In the parallel BP each processor 
performs one (or more) cycles of serial BP on its set of training examples. Then a 
synchronization step is performed that consists of averaging the iterates computed 
by all the k processors. From the mathematical point of view this is equivalent to 
each processor I E {I, ... , k} handling the partial error function I' (x) associated 
with the corresponding set of training examples J,. In this setting we have 

k 

J'(x)=~Ii(x), f(x)=~f'(x) 
iEJI 1=1 

We note that in training a neural network it might be advantageous to assign 
some training examples to more than one parallel processor. We thus allow for the 
possibility of overlapping sets J,. 

The notation for Algorithm 2.2 is similar to that for Algorithm 2.1, except for the 
index 1 that is used to label the partial error function and minor iterates associated 
with the l-th parallel processor. We now state the parallel BP with a momentum 
term. 

Algorithm 2.2. Parallel Online BP with a Momentum Term. 
Start with any xO E ~n. Having xi, stop if xi+l = xi, else compute x i+l as follows 

(i) Parallelization. For each parallel processor I E {I, ... , k} do 
i,l i 

z, = x 

i,i+l _ i,i '~f' (iIi) + . A i,i . 1 N z, - z, - 7], v m(j) z, c¥,uz" J = , ... , I 

where 

~zlili = { 0 
z;,i - z;,i- l otherwise 

if j = 1 

(7) 

(8) 

(9) 
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o < TJi < 1, O:s a i < 1 

(ii) Synchronization 
k 

Xi+l = ~ L z;,Nr+l 
1=1 

We give below in Table 1 a flowchart of this algorithm. 

i 1 . 
Z ' .- x' 1 .-

Serial BP on 
examples in Jl 

Major iteration i : xi 

/ ..... ~ .~ 

i 1 . z' '- x' I . -

~ 
Serial BP on 

examples in J, 

~ 
i,Nr+l z, 

i 1 . z' '- x' k .-

~ 
Serial BP on 

examples in Jk 

~ 
i,N,,+I 

zk 

J / 
M ·· . . 1 ,'+1 1 "k i Nr+ 1 aJor IteratIOn z + : x = k L.....I=1 z,' 

Table 1. Flowchart of the Parallel BP 

(10) 

Remark 2.4. It is well known that ordinary backpropagation is a relatively slow 
algorithm. One appealing remedy is parallelization (Zhang,Mckenna,Mesirov & 
Waltz, 1990). The proposed Algorithm 2.2 is a possible step in that direction. 
Note that in Algorithm 2.2 all processors typically use the same program for their 
computations. Thus load balancing is easily achieved. 

Remark 2.5. We wish to point out that synchronization strategies other than 
(10) are possible. For example, one may choose among the k sets of weights and 
thresholds the one that best classifies the training data. 

To the best of our knowledge there are no published deterministic convergence 
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proofs for either of Algorithms 2.1,2.2. Using new convergence analysis for a class of 
nonmonotone optimization methods with perturbations (Mangasarian & Solodov, 
1994), we are able to derive deterministic convergence properties for online BP 
and its modifications. Once again we emphasize the equivalence of either of those 
methods to a deterministic nonmonotone perturbed gradient-type algorithm. 

We now state our main convergence theorem. An important result used in the proof 
is given in the Mathematical Appendix. We refer interested readers to (Mangasarian 
& Solodov, 1994) for more details. 

Theorem 2.1. If the learning and momentum rates are chosen such that 

00 00 00 

L l7i = 00, L 171 < 00, L O:'il7i < 00, (11) 
i=O i=O i=O 

then for any sequence {xi} generated by any of the Algorithms 2.1 or 2.2, it follows 
that {/(xiH converges, {\7 !(xi)} - 0, and for each accumulation point x of the 
sequence {x'}, \7 I( x) = O. 

Remark 2.6. We note that conditions (11) imply that both the learning and 
momentum rates asymptotically tend to zero. These conditions are similar to those 
used in (White, 1989; Luo & Tseng, 1994) and seem to be the inevitable price paid 
for rigorous convergence. For practical purposes the learning rate can be fixed or 
adjusted to some small but finite number to obtain an approximate solution to the 
minimization problem. For state-of-the-art techniques of computing the learning 
rate see (Ie Cun, Simard & Pearlmutter, 1993). 

Remark 2.7. We wish to point out that Theorem 2.1 covers BP with momentum 
and/or decay terms for which there is no published convergence analysis of any 
kind. 

Remark 2.8. We note that the approach of perturbed minimization provides 
theoretical justification to the well known properties of robustness and recovery 
from damage for neural networks (Sejnowski & Rosenberg, 1987). In particular, this 
approach shows that the net should recover from any reasonably small perturbation. 

Remark 2.9. Establishing convergence to a stationary point seems to be the 
best one can do for a first-order minimization method without any additional re­
strictive assumptions on the objective function. There have been some attempts 
to achieve global descent in training, see for example, (Cetin,Burdick & Barhen, 
1993). However, convergence to global minima was not proven rigorously in the 
multidimensional case. 

3 MATHEMATICAL APPENDIX: CONVERGENCE OF 
ALGORITHMS WITH PERTURBATIONS 

In this section we state a new result that enables us to establish convergence prop­
erties of BP. The full proof is nontrivial and is given in (Mangasarian & Solodov, 
1994). 
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Theorem 3.1. General Nonmonotonic Perturbed Gradient Convergence 
(subsumes BP convergence). 
Suppose that f(x) is bou?,!-ded below and that \1 f(x) is bounded and Lipschitz contin­
uous on the sequence {x'} defined below. Consider the following perturbed gradient 
algorithm. Start with any x O E ~n. Having xi, stop if \1 f(x i ) = 0, else compute 

(12) 

where 
di = -\1f(x i ) + e i (13) 

for some ei E ~n, TJi E~, TJi > 0 and such that for some I > 0 

00 00 00 

L TJi = 00, L TJl < 00, L TJdleili < 00, Ileill ~ I Vi (14) 
;=0 i=O i=O 

It follows that {f(xi)} converges, {\1 f(x i )} -+ 0, and for each accumulation point 
x of the sequence {x'}, V' f(x) = O. If, in addition, the number of stationary points 
of f(x) is finite, then the sequence {xi} converges to a stationary point of f(x). 

Remark 3.1. The error function of BP is nonnegative, and thus the boundedness 
condition on f(x) is satisfied automatically. There are a number of ways to ensure 
that f(x) has Lipschitz continuous and bounded gradient on {xi} . In (Luo & Tseng, 
1994) a simple projection onto a box is introduced which ensures that the iterates 
remain in the box. In (Grippo, 1994) a regularization term as in (6) is added to the 
error function so that the modified objective function has bounded level sets. We 
note that the latter provides a mathematical justification for weight decay (Hinton, 
1986; Weigend,Huberman & Rumelhart, 1990). In either case the iterates remain 
in some compact set, and since f( x) is an infinitely smooth function, its gradient is 
bounded and Lipschitz continuous on this set as desired. 
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