
Fool.s Gold: Extracting Finite State Machines
From Recurrent Network Dynamics

John F. Kolen
Laboratory for Artificial Intelligence Research

Department of Computer and Information Science
The Ohio State University

Columbus,OH 43210
kolen-j @cis.ohio-state.edu

Abstract

Several recurrent networks have been proposed as representations for the
task of formal language learning. After training a recurrent network rec­
ognize a formal language or predict the next symbol of a sequence, the
next logical step is to understand the information processing carried out
by the network. Some researchers have begun to extracting finite state
machines from the internal state trajectories of their recurrent networks.
This paper describes how sensitivity to initial conditions and discrete
measurements can trick these extraction methods to return illusory finite
state descriptions.

INTRODUCTION

Formal language learning (Gold, 1969) has been a topic of concern for cognitive science
and artificial intelligence. It is the task of inducing a computational description of a formal
language from a sequence of positive and negative examples of strings in the target lan­
guage. Neural information processing approaches to this problem involve the use of recur­
rent networks that embody the internal state mechanisms underlying automata models
(Cleeremans et aI., 1989; Elman, 1990; Pollack, 1991; Giles et aI, 1992; Watrous & Kuhn,
1992). Unlike traditional automata-based approaches, learning systems relying on recurrent
networks have an additional burden: we are still unsure as to what these networks are
doing.Some researchers have assumed that the networks are learning to simulate finite state

501

502 Kolen

machines (FSMs) in their state dynamics and have begun to extract FSMs from the net­
works' state transition dynamics (Cleeremans et al., 1989; Giles et al., 1992; Watrous &
Kuhn, 1992). These extraction methods employ various clustering techniques to partition
the internal state space of the recurrent network into a finite number of regions correspond­
ing to the states of a finite state automaton.

This assumption of finite state behavior is dangerous on two accounts. First, these extrac­
tion techniques are based on a discretization of the state space which ignores the basic def­
inition of information processing state. Second, discretization can give rise to incomplete
computational explanations of systems operating over a continuous state space.

SENSITIVITY TO INITIAL CONDITIONS

In this section, I will demonstrate how sensitivity to initial conditions can confuse an FSM
extraction system. The basis of this claim rests upon the definition of information processing
state. Information processing (lP) state is the foundation underlying automata theory. Two
IP states are the same if and only if they generate the same output responses for all possible
future inputs (Hopcroft & Ullman, 1979). This definition is the fulcrum for many proofs and
techniques, including finite state machine minimization. Any FSM extraction technique
should embrace this definition, in fact it grounds the standard FSM minimization methods
and the physical system modelling of Crutchfield and Young (Crutchfield & Young, 1989).

Some dynamical systems exhibit exponential divergence for nearby state vectors, yet
remain confined within an attractor. This is known as sensitivity to initial conditions. If this
divergent behavior is quantized, it appears as nondeterministic symbol sequences (Crutch­
field & Young, 1989) even though the underlying dynamical system is completely deter­
ministic (Figure 1).

Consider a recurrent network with one output and three recurrent state units. The output
unit performs a threshold at zero activation for state unit one. That is, when the activation
of the first state unit of the current state is less than zero then the output is A. Otherwise,
the output is B. Equation 1 presents a mathematical description. Set) is the current state of
the system 0 (t) is the current output.

S (t + 1) = tanh (0 0 2 1 . S(t)) r2 -2 0 -J [~
o 0 2 -1 1

(1)

Figure 2 illustrates what happens when you run this network for many iterations. The point
in the upper left hand state space is actually a thousand individual points all within a ball
of radius 0.01. In one iteration these points migrate down to the lower corner of the state
space. Notice that the ball has elongated along one dimension. After ten iterations the orig­
inal ball shape is no longer visible. After seventeen, the points are beginning to spread
along a two dimensional sheet within state space. And by fifty iterations, we see the net­
work reaching the its full extent of in state space. This behavior is known as sensitivity to
initial conditions and is one of three conditions which have been used to characterize cha­
otic dynamical systems (Devaney, 1989). In short, sensitivity to initial conditions implies

Fool's Gold: Extracting Finite State Machines from Recurrent Network Dynamics 503

x~4x(l-x)

{ : x<O.5 @A O(x) =
x>O.5

x~2x mod 1
A

1
x<-

3

O(x) = B
1 2
- <x<-
3 3

C
2
-<x
3 C A

x ~ 3.68x(l-x)

C
x<O.5

O(x) =
x>O.5

Figure 1: Examples of deterministic dynamical systems whose discretize trajectories
appear nondeterministic.

that any epsilon ball on the attractor of the dynamical will exponentially diverge, yet still
be contained within the locus of the attractor. The rate of this divergence is illustrated in
Figure 3 where the maximum distance between two points is plotted with respect to the
number of iterations. Note the exponential growth before saturation. Saturation occurs as
the point cloud envelops the attractor.

No matter how small one partitions the state space, sensitivity to initial conditions will
eventually force the extracted state to split into multiple trajectories independent of the
future input sequence. This is characteristic of a nondeterministic state transition. Unfortu­
nately, it is very difficult, and probably intractable, to differentiate between a nondetermin­
istic system with a small number of states or a deterministic with large number of states. In
certain cases, however, it is possible to analytically ascertain this distinction (Crutchfield &
Young, 1989).

THE OBSERVERS' PARADOX

One response to this problem is to evoke more computationally complex models such as
push-down or linear-bounded automata. Unfortunately, the act of quantization can actually
introduce both complexion and complexity in the resulting symbol sequence. Pollack and
I have focused on a well-hidden problems with the symbol system approach to understand­
ing the computational powers of physical systems. This work (Kolen & Pollack, 1993;

S04 Kolen

1

I

output=A 1
Start (e<O.Ol)

1

I

output=A,B 1

17 iterations

1

I

output=B 1
1 iteration

1

output=A,B 1

25 iterations

1

I

output=A 1
10 iterations

I

1

1
50 iterations

Figure 2: The state space of a recurrent network whose next state transitions are
sensitive to initial conditions. The initial epsilon ball contains 1000 points. These points
first straddle the output decision boundary at iteration seven.

Kolen & Pollack, In press) demonstrated that computational complexity, in terms of Chom­
sky's hierarchy of formal languages (Chomsky, 1957; Chomsky, 1965) and Newell and
Simon's physical symbol systems (Newell & Simon, 1976), is not intrinsic to physical sys­
tems. The demonstration below shows how apparently trivial changes in the partitioning of
state space can produce symbol sequences from varying complexity classes.

Consider a point moving in a circular orbit with a fixed rotational velocity, such as the end
of a rotating rod spinning around a fixed center, or imagine watching a white dot on a spin­
ning bicycle wheel. We measure the location of the dot by periodically sampling the loca­
tion with a single decision boundary (Figure 4, left side). If the point is to the left of
boundary at the time of the sample, we write down an "1". Likewise, we write down an "r"
when the point is on the other side. (The probability of the point landing on the boundary
is zero and can arbitrarily be assigned to either category without affecting the results
below.) In the limit, we will have recorded an infinite sequence of symbols containing long
sequences of r's and l's.

The specific ordering of symbols observed in a long sequence of multiple rotations is

Fool's Gold: Extracting Finite State Machines from Recurrent Network Dynamics 505

••••• • •
ell

2.5
...... c:: • 0
0.. • •
c:: 2 •
0
0
~
0 • • .0 1.5
0
u c:: • ~
ell

1
"1:;)

8 ::s •
S

0.5 • •
~ •

::E • ••
• • • • •

10 20 30 40 50
Iteration number

Figure 3: Spread of initial points across the attractor as measured by maximum distance.

1 r

1 r

c

Figure 4: On the left, two decision regions which induce a context free language. 9 is
the current angle of rotation. At the time of sampling, if the point is to the left (right) of
the dividing line, an 1 (r) is generated. On the right, three decision regions which
induce a context sensitive language.

dependent upon the initial rotational angle of the system. However, the sequence does pos­
sess a number of recurring structural regularities, which we call sentences: a run of r's fol­
lowed by a run of l's. For a fixed rotational velocity (rotations per time unit) and sampling
rate, the observed system will generate sentences of the form r n1 m (n, m > 0). (The notation
rn indicates a sequence of n r's.) For a fixed sampling rate, each rotational velocity spec­
ifies up to three sentences whose number of r's and l's differ by at most one. These sen­
tences repeat in an arbitrary manner. Thus, a typical subsequence of a rotator which
produces sentences r n1 n, r n1 n+l ,rn+ 11 n would look like

506 Kolen

rnln+lrnlnrnln+lrn+l1nrnlnrnln+l.

A language of sentences may be constructed by examining the families of sentences gener­
ated by a large collection of individuals, much like a natural language is induced from the
abilities of its individual speakers. In this context, a language could be induced from a pop­
ulation of rotators with different rotational velocities where individuals generate sentences
of the form {r"l n, r"l "+1 ,r"+ll"}, n > O. The reSUlting language can be described by a
context free grammar and has unbounded dependencies; the number of 1 's is a function of
the number of preceding r's. These two constraints on the language imply that the induced
language is context free.

To show that this complexity class assignment is an artifact of the observational mecha­
nism, consider the mechanism which reports three disjoint regions: 1, c, and r (Figure 4,
right side). Now the same rotating point will generate sequences ofthe form

... rr ... rrcc ... ccll. .. llrr ... rrcc ... ccll ... ll

For a fixed sampling rate, each rotational velocity specifies up to seven sentences, r nc ffil k,
when n, m, and k can differ no by no more than one. Again, a language of sentences may
be constructed containing all sentences in which the number ofr's, c's, and l's differs by
no more than one. The resulting language is context sensitive since it can be described by
a context sensitive grammar and cannot be context free as it is the finite union of several
context sensitive languages related to r"c"l n.

CONCLUSION

Using recurrent neural networks as the representation underlying the language learning task
has revealed some inherent problems with the concept of this task. While formal languages
have mathematical validity, looking for language induction in physical systems is question­
able, especially if that system operates with continuous internal states. As I have shown,
there are two major problems with the extraction of a learned automata from our models.

First, sensitivity to initial conditions produces nondeterministic machines whose trajecto­
ries are specified by both the initial state of the network and the dynamics of the state trans­
formation. The dynamics provide the shape of the eventual attractor. The initial conditions
specify the allowable trajectories toward that attractor. While clustering methods work in
the analysis of feed-forward networks because of neighborhood preservation (as each layer
is a homeomorphism), they may fail when applied to recurrent network state space trans­
formations. FSM construction methods which look for single transitions between regions
will not help in this case because the network eventually separates initially nearby states
across several FSM state regions.

The second problem with the extraction of a learned automata from recurrent network is
that trivial changes in observation strategies can cause one to induce behavioral descrip­
tions from a wide range of computational complexity classes for a single system. It is the
researcher's bias which determines that a dynamical system is equivalent to a finite state
automata.

Fool's Gold: Extracting Finite State Machines from Recurrent Network Dynamics 507

One response to the first problem described above has been to remove and eliminate the
sources of nondeterminism from the mechanisms. Zeng et. a1 (1993) corrected the second­
order recurrent network model by replacing the continuous internal state transformation with
a discrete step function. (The continuous activation remained for training purposes.) This
move was justified by their focus on regular language learning, as these languages can be rec­
ognized by finite state machines. This work is questionable on two points, however. First,
tractable algorithms already exist for solving this problem (e.g. Angluin, 1987). Second, they
claim that the network is self-clustering the internal states. Self-clustering occurs only at the
comers of the state space hypercube because of the discrete activation function, in the same
manner as a digital sequential circuit "clusters" its states. Das and Mozer (1994), on the other
hand, have relocated the clustering algorithm. Their work focused on recurrent networks that
perform internal clustering during training. These networks operate much like competitive
learning in feed-forward networks (e.g. Rumelhart and Zipser, 1986) as the dynamics of the
learning rules constrain the state representations such that stable clusters emerge.

The shortcomings of finite state machine extraction must be understood with respect to the
task at hand. The actual dynamics of the network may be inconsequential to the final prod­
uct if one is using the recurrent network as a pathway for designing a finite state machine.
In this engineering situation, the network is thrown away once the FSM is extracted. Neural
network training can be viewed as an "interior" method to finding discrete solutions. It is
interior in the same sense as linear programming algorithms can be classified as either edge
or interior methods. The former follows the edges of the simplex, much like traditional
FSM learning algorithms search the space of FSMs. Internal methods, on the other hand,
explore search spaces which can embed the target spaces. Linear programming algorithms
employing internal methods move through the interior of the defined simplex. Likewise,
recurrent neural network learning methods swim through mechanisms with mUltiple finite
state interpretations. Some researchers, specifically those discussed above, have begun to
bias recurrent network learning to walk the edges (Zeng et al, 1993) or to internally cluster
states (Das & Mozer, 1994).

In order to understand the behavior of recurrent networks, these devices should be regarded
as dynamical systems (Kolen, 1994). In particular, most common recurrent networks are
actually iterated mappings, nonlinear versions of Barnsley's iterated function systems
(Barnsley, 1988). While automata also fall into this class, they are a specialization of
dynamical systems, namely discrete time and state systems. Unfortunately, information
processing abstractions are only applicable within this domain and do not make any sense
in the broader domains of continuous time or continuous space dynamical systems.

Acknowledgments

The research reported in this paper has been supported by Office of Naval Research grant
number NOOOI4-92-J-1195. I thank all those who have made comments and suggestions for
improvement of this paper, especially Greg Saunders and Lee Giles.

References

Angluin, D. (1987). Learning Regular Sets from Queries and Counterexamples. Information

508 Kolen

and Computation, 75,87-106.
Barnsley, M. (1988). Fractals Everywhere. Academic Press: San Diego, CA.
Chomsky, N. (1957). Syntactic Structures. The Hague: Mounton & Co.
Chomsky, N. (1965). Aspects of the Theory of Syntax. Cambridge, Mass.: MIT Press.
Cleeremans, A, Servan-Schreiber, D. & McClelland, J. L. (1989). Finite state automata and
simple recurrent networks. Neural Computation, 1,372-381.
Crutchfield, J. & Young, K. (1989). Computation at the Onset of Chaos. In W. Zurek, (Ed.),
Entropy, Complexity, and the Physics of Information. Reading: Addison-Wesely.
Das, R. & Mozer, M. (1994) A Hybrid Gradient-Descent/Clustering Technique for Finite
State Machine Induction. In Jack D. Cowan, Gerald Tesauro, and Joshua Alspector, (Eds.),
Advances in Neural Information Processing Systems 6. Morgan Kaufman: San Francisco.
Devaney, R. L. (1989). An Introduction to Chaotic Dynamical Systems. Addison-Wesley.
Elman, J. (1990). Finding structure in time. Cognitive Science, 14, 179-211.
Giles, C. L., Miller, C. B., Chen, D., Sun, G. Z., Chen, H. H. & C.Lee, Y. (1992). Extracting
and Learning an Unknown Grammar with Recurrent Neural Networks. In John E. Moody,
Steven J. Hanson & Richard P. Lippman, (Eds.), Advances in Neural Information Processing
Systems 4. Morgan Kaufman.
Gold, E. M. (1969). Language identification in the limit. Information and Control, 10,372-
381.
Hopcroft, J. E. & Ullman, J. D. (1979). Introduction to Automata Theory, Languages, and
Computation. Addison-Wesely.
Kolen, J. F. (1994) Recurrent Networks: State Machines or Iterated Function Systems? In M.
C. Mozer, P. Smolensky, D. S. Touretzky, J. L. Elman, & AS. Weigend (Eds.), Proceedings
of the 1993 Connectionist Models Summer School. (pp. 203-210) Hillsdale, NJ: Erlbaum
Associates.
Kolen, J. F. & Pollack, J. B. (1993). The Apparent Computational Complexity of Physical
Systems. In Proceedings of the Fifteenth Annual Conference of the Cognitive Science Society.
Laurence Earlbaum.
Kolen, J. F. & Pollack, J. B. (In press) The Observers' Paradox: The Apparent Computational
Complexity of Physical Systems. Journal of Experimental and Theoretical Artificial Intelli­
gence.
Pollack, J. B. (1991). The Induction Of Dynamical Recognizers. Machine Learning, 7.227-
252.
Newell, A. & Simon, H. A (1976). Computer science as empirical inquiry: symbols and
search. Communications of the Associationfor Computing Machinery, 19, 113-126.
Rumelhart, D. E., and Zipser, D. (1986). Feature Discovery by Competitive Learning. In D.
E. Rumelhart, J. L. McClelland, and the PDP Research Group, (Eds.), Parallel Distributed
Processing. Volume 1. 151-193. MIT Press: Cambridge, MA
Watrous, R. L. & Kuhn, G. M. (1992). Induction of Finite-State Automata Using Second­
Order Recurrent Networks. In John E. Moody, Steven J. Hanson & Richard P. Lippman,
(Eds.), Advances in Neural Information Processing Systems 4. Morgan Kaufman.
Zeng, Z., Goodman, R. M., Smyth, P. (1993). Learning Finite State Machines With Self-Clus­
tering Recurrent Networks. Neural Computation, 5, 976-990

PART IV

NEUROSCIENCE

