
A Massively-Parallel SIMD Processor for
Neural Network and Machine Vision

Applications

Michael A. Glover
Current Technology, Inc.

99 Madbury Road
Durham, NH 03824

W. Thomas Miller, III
Department of Electrical and Computer Engineering

The University of New Hampshire
Durham, NH 03824

Abstract

This paper describes the MM32k, a massively-parallel SIMD com­
puter which is easy to program, high in performance, low in cost
and effective for implementing highly parallel neural network ar­
chitectures. The MM32k has 32768 bit serial processing elements,
each of which has 512 bits of memory, and all of which are inter­
connected by a switching network. The entire system resides on
a single PC-AT compatible card. It is programmed from the host
computer using a C++ language class library which abstracts the
parallel processor in terms of fast arithmetic operators for vectors
of variable precision integers.

1 INTRODUCTION

Many well known neural network techniques for adaptive pattern classification and
function approximation are inherently highly parallel, and thus have proven dif­
ficult to implement for real-time applications at a reasonable cost. This includes

843

844 Glover and Miller

a variety of learning systems such as radial basis function networks [Moody 1989],
Kohonen self-organizing networks [Kohonen 1982], ART family networks [Carpenter
1988], and nearest-neighbor interpolators [Duda 1973], among others. This paper
describes the MM32k, a massively-parallel SIMD computer which is easy to pro­
gram, high in performance, low in cost and effective for implementing highly parallel
neural network architectures. The MM32k acts as a coprocessor to accelerate vector
arithmetic operations on PC-AT class computers, and can achieve giga-operation
per second performance on suitable problems. It is programmed from the host
computer using a C++ language class library, which overloads typical arithmetic
operators, and supports variable precision arithmetic. The MM32k has 32768 bit
serial PEs, or processing elements, each of which has 512 bits of memory, and all
of which are interconnected by a switching network. The PEs are combined with
their memory on an single DRAM memory chip giving 2048 processors per chip.
The entire 32768 processor system resides on a single ISA bus compatible card. It
is much more cost effective than other SIMD processors [Hammerstrom 1990; Hillis
1985; Nickolls 1990; Potter 1985] and more flexible than fixed purpose chips [Holler
1991].

2 SIMD ARCHITECTURE

The SIMD PE array contains 32768 one bit processors, each with 512 bits of memory
and a connection to the interconnection network. The PE array design is unique
in that 2048 PEs, including their PE memory, are realized on a single chip. The
total PE array memory is 2 megabytes and has a peak memory bandwidth is 25
gigabytes per second. The PE array can add 8 bit integers at 2.5 gigaoperations
per second. It also dissipates less than 10 watts of power and is shown in Figure 1.

Each PE has three one bit registers, a 512 bit memory, and a one bit AL U. It
performs bit serial arithmetic and can therefore vary the number of bits of precision
to fit the problem at hand, saving SIMD instruction cycles and SIMD memory.
There are 17 instructions in the PE instruction set, all of which execute at a 6.25
MIPS rate. The PE instruction set is functionally complete in that it can perform
boolean NOT and OR functions and can therefore perform any operation, including
arithmetic and conditional operations. A single PE is shown in Figure 2.

The interconnection network allows data to be sent from one PE to another. It is
implemented by a 64*64 full crossbar switch with 512 PEs connected to each port
of the switch. It allows data to be sent from one PE to another PE, an arbitrary
distance away, in constant time. The peak switch bandwidth is 280 megabytes per
second. The switch also allows the PE array to perform data reduction operations,
such as taking the sum or maximum over data elements distributed across all PEs.

3 C++ PROGRAMMING ENVIRONMENT

The purpose of the C++ programming environment is to allow a programmer to
declare and manipulate vectors on the MM32k as if they were variables in a pro­
gram running on the host computer. Programming is performed entirely on the
host, using standard MS-DOS or Windows compatible C++ compilers. The C++
programming environment for the MM32k is built around a C++ class, named

A Massively-Parallel SIMD Processor for Neural Network and Machine Vision Applications 845

Host Computer
(PC-AT)

Vector Instructions and Data

Controller

PE Instructions and Data

1-1- 1-
PE PE PE PE PE PE
0 1 2 3

... j . ..
3276

'--,.- -,.- '--,--

Switch

Figure 1: A block diagram of the MM32k.

Bit 511
Bit 510
Bit 509

9 Bit Address
from Controller .. 512 Bit Memory
Address Bus

Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0

PE ALU Opcode .. from Controller
Data Bus·

Data to Data from
Switch A Register M Register B Register Switch

1 Bit 1 Bit 1 Bit

Figure 2: A block diagram of a single processing element (PE).

846 Glover and Miller

Table 1: 8 Bit Operations With 32768 and 262144 Elements

8 bit
operation

copy
vector+vector
vector+scalar
vector*vector
vector*scalar
vector>scalar
align(vector ,scalar)
sum(vector)
maximum(vector)

Actual MOPS
with length

of 32768

1796
1455
1864
206
426

1903
186
52

114

Actual MOPS
with length
of 262144

9429
2074
3457

215
450

6223
213
306
754

MM_ VECTOR, which represents a vector of integers. Most of the standard C
arithmetic operators, such as +, -, *, I, =, and> have been overloaded to work
with this class. Some basic functions, such as absolute value, square root, mini­
mum, maximum, align, and sum, have also been overloaded or defined to work with
the class.

The significance of the class MM_ VECTOR is that instances of it look and act
like ordinary variables in a C++ program. So a programmer may add, subtract,
assign, and manipulate these vector variables from a program running on the host
computer, but the storage associated with them is in the SIMD memory and the
vector operations are performed in parallel by the SIMD PEs. MM_ VECTORs can
be longer than 32768. This is managed (transparent to the host program) by placing
two or more vector elements in the SIMD memory of each PE. The class library
keeps track of the number of words per PE. MM_ VECTORs can be represented by
different numbers of bits. The class library automatically keeps track of the number
of bits needed to represent each MM_ VECTOR without overflow. For example, if
two 12 bit integers were added together, then 13 bits would be needed to represent
the sum without overflow. The resulting MM_VECTOR would have 13 bits. This
saves SIMD memory space and SIMD PE instruction cycles. The performance of
the MM32k on simple operators running under the class library is listed in Table 1.

4 NEURAL NETWORK EXAMPLES

A common operation found in neural network classifiers (Kohonen, ART, etc.) is
the multi-dimensional nearest-neighbor match. If the network has a large number
of nodes, this operation is particularly inefficient on single processor systems, which
must compute the distance metric for each node sequentially. Using the MM32k, the
distance metrics for all nodes (up to 32768 nodes) can be computed simultaneously,
and the identification of the minimum distance can be made using an efficient tree
compare included in the system microcode.

A Massively-Parallel SIMD Processor for Neural Network and Machine Vision Applications 847

Table 2: Speedup on Nearest Neighbor Search

Processor Time for Time for MM32k MM32k
32768 nodes 65536 nodes speedup for speedup for

32768 nodes 65536 nodes

MM32k 2.2 msec 3.1 msec 1:1 1:1
i486 350 msec 700 msec 159:1 226:1
MIPS 970 msec 1860 msec 441:1 600:1
Alpha 81 msec 177 msec 37:1 57:1
SPARC 410 msec 820 msec 186:1 265:1

Figure 3 shows a C++ code example for performing a 16-dimensional nearest neigh­
bor search over 32768 nodes. The global MM_ VECTOR variable state[16] defines
the 16-dimensionallocation of each node. Each logical element of state[] (state[O],
state[l], etc.) is actually a vector with 32768 elements distributed across all pro­
cessors. The routine find_besLmatchO computes the euclidean distance between
each node's state and the current test vector test_input[], which resides on the host
processor. Note that the equations appear to be scalar in nature, but in fact direct
vector operations to be performed by all processors simultaneously.

The performance of the nearest neighbor search shown in Figure 3 is listed in Table
2. Performance on the same task is also listed for four comparison processors: a
Gateway2000 mode14DX2-66V with 66 MHz 80486 processor (i486), a DECstation
5000 Model 200 with 25 MHz MIPS R3000A processor (MIPS), a DECstation 3000
Model 500AXP with 150 MHz Alpha AXP processor (Alpha), and a Sun SPARC­
station 10 Model 30 with 33 MHz SuperSPARC processor (SPARC). There are 16
subtractions, 16 additions, 16 absolute values, one global minimum, and one global
first operation performed. The MM32k is tested on problems with 32768 and 65536
exemplars and compared against four popular serial machines performing equivalent
searches. The MM32k requires 3.1 milliseconds to search 65536 exemplars which is
265 times faster than a SPARC 10.

The flexibility of the MM32k for neural network applications was demonstrated
by implementing compl~te fixed-point neural network paradigms on the MM32k
and on the four comparison processors (Table 3). Three different neural network
examples were evaluated. The first was a radial basis function network with 32,768
basis functions (rational function approximations to gaussian functions). Each basis
function had 9 8-bit inputs, 3 16-bit outputs (a vector basis function magnitude),
and independent width parameters for each of the nine inputs. The performances
listed in the table (RBF) are for feedforward response only. The second example
was a Kohonen self-organizing network with a two-dimensional sheet of Kohonen
nodes of dimension 200x150 (30,000 nodes). The problem was to map a nonlinear
robotics forward kinematics transformation with eight degrees of freedom (8-bit
parameters) onto the two-dimensional Kohonen layer. The performances listed in
the table (Kohonen) are for self-organizing training. The third example problem
was a neocognitron for target localization in a 256x256 8-bit input image. The first
hidden layer of the neocognitron had 8 256x256 sheets of linear convolution units

848 Glover and Miller

1* declare 16-D ""32k exemplars *1
""_VECTOR state[16] = {

""_VECTOR(32168), ""_VECTOR(32168),
""_VECTOR(32168), ""_VECTOR(32168),
""_VECTOR(32168), ""_VECTOR(32168),
""_VECTOR(32168) , ""_VECTOR(32168) ,
""_VECTOR(32168), ""_VECTOR(32168),
""_VECTOR(32168), ""_VECTOR(32168),
""_VECTOR(32168), ""_VECTOR(32168),
""_VECTOR(32168) , ""_VECTOR(32168)

};

1* return PE number of processor with closest match */
long find_best_match(long test_input[16])
{

}

int i;
""_VECTOR difference(32168);
""_VECTOR distance(32168);

1* differences *1
1* distances *1

1* compute the 16-D distance scores *1
distance = OJ
for (i=O; i<16; ++i) {

difference = state[i] - test_input[i];
distance = distance + (difference * difference);

}

1* return the PE number for minimum distance *1
return first(distance == minimum(distance»;

Figure 3: A C++ code example implementing a nearest neighbor search.

A Massively-Parallel SIMD Processor for Neural Network and Machine Vision Applications 849

Table 3: MM32k Speedup for Select Neural Network Paradigms

Processor

MM32k
i486
MIPS
Alpha
SPARC

RBF

1:1
161:1
180:1

31:1
94:1

Kohonen NCGTRN

1:1 1:1
76:1 336:1
69:1 207:1
11:1 35:1
49:1 378:1

with 16x16 receptive fields in the input image. The second hidden layer of the
neocognitron had 8 256x256 sheets of sigmoidal units (fixed-point rational function
approximations to sigmoid functions) with 3x3x8 receptive fields in the first hidden
layer. The output layer of the neocognitron had 256x256 sigmoidal units with
3x3x8 receptive fields in the second hidden layer. The performances listed in the
table (NCGTRN) correspond to feedforward response followed by backpropagation
training. The absolute computation times for the MM32k were 5.1 msec, 10 msec,
and 1.3 sec, for the RBF, Kohonen, and NCGTRN neural networks, respectively.

Acknowledgements

This work was supported in part by a grant from the Advanced Research Projects
Agency (ARPA/ONR Grant #NOOOI4-92-J-1858).

References

J. 1. Potter. (1985) The Massively Parallel Processor, Cambridge, MA: MIT Press.

G. A. Carpenter and S. Grossberg. (1988) The ART of adaptive pattern recognition
by a self-organizing neural network. Computer vol. 21, pp. 77-88.

R. O. Duda and P. E. Hart. (1973) Pattern Classification and Scene Analysis. New
York: Wiley.

D. Hammerstrom. (1990) A VLSI architecture for high-performance, low cost, on­
chip learning, in Proc. IJCNN, San Diego, CA, June 17-21 , vol. II, pp. 537-544.

W. D. Hillis. (1985) The Connection Machine. Cambridge, MA: MIT Press .

M. Holler. (1991) VLSI implementations oflearning and memory systems: A review.
In Advances in Neural Information Processing Systems 3, ed. by R. P. Lippman, J.
E. Moody, and D. S. Touretzky, San Francisco, CA: Morgan Kaufmann.

T. Kohonen. (1982) Self-organized formation of topologically correct feature maps.
Biological Cybernetics, vol. 43, pp. 56-69.

J. Moody and C. Darken. (1989) Fast learning in networks of locally- tuned pro­
cessing units . Neural Computation, vol. 1, pp. 281-294.

J. R. Nickolls. (1990) The design of the MasPar MP-1: A cost-effective massively
parallel computer. In Proc. COMPCON Spring '90, San Francisco, CA, pp. 25-28 ..

