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Abstract 

This paper describes the MM32k, a massively-parallel SIMD com­
puter which is easy to program, high in performance, low in cost 
and effective for implementing highly parallel neural network ar­
chitectures. The MM32k has 32768 bit serial processing elements, 
each of which has 512 bits of memory, and all of which are inter­
connected by a switching network. The entire system resides on 
a single PC-AT compatible card. It is programmed from the host 
computer using a C++ language class library which abstracts the 
parallel processor in terms of fast arithmetic operators for vectors 
of variable precision integers. 

1 INTRODUCTION 

Many well known neural network techniques for adaptive pattern classification and 
function approximation are inherently highly parallel, and thus have proven dif­
ficult to implement for real-time applications at a reasonable cost. This includes 
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a variety of learning systems such as radial basis function networks [Moody 1989], 
Kohonen self-organizing networks [Kohonen 1982], ART family networks [Carpenter 
1988], and nearest-neighbor interpolators [Duda 1973], among others. This paper 
describes the MM32k, a massively-parallel SIMD computer which is easy to pro­
gram, high in performance, low in cost and effective for implementing highly parallel 
neural network architectures. The MM32k acts as a coprocessor to accelerate vector 
arithmetic operations on PC-AT class computers, and can achieve giga-operation 
per second performance on suitable problems. It is programmed from the host 
computer using a C++ language class library, which overloads typical arithmetic 
operators, and supports variable precision arithmetic. The MM32k has 32768 bit 
serial PEs, or processing elements, each of which has 512 bits of memory, and all 
of which are interconnected by a switching network. The PEs are combined with 
their memory on an single DRAM memory chip giving 2048 processors per chip. 
The entire 32768 processor system resides on a single ISA bus compatible card. It 
is much more cost effective than other SIMD processors [Hammerstrom 1990; Hillis 
1985; Nickolls 1990; Potter 1985] and more flexible than fixed purpose chips [Holler 
1991]. 

2 SIMD ARCHITECTURE 

The SIMD PE array contains 32768 one bit processors, each with 512 bits of memory 
and a connection to the interconnection network. The PE array design is unique 
in that 2048 PEs, including their PE memory, are realized on a single chip. The 
total PE array memory is 2 megabytes and has a peak memory bandwidth is 25 
gigabytes per second. The PE array can add 8 bit integers at 2.5 gigaoperations 
per second. It also dissipates less than 10 watts of power and is shown in Figure 1. 

Each PE has three one bit registers, a 512 bit memory, and a one bit AL U. It 
performs bit serial arithmetic and can therefore vary the number of bits of precision 
to fit the problem at hand, saving SIMD instruction cycles and SIMD memory. 
There are 17 instructions in the PE instruction set, all of which execute at a 6.25 
MIPS rate. The PE instruction set is functionally complete in that it can perform 
boolean NOT and OR functions and can therefore perform any operation, including 
arithmetic and conditional operations. A single PE is shown in Figure 2. 

The interconnection network allows data to be sent from one PE to another. It is 
implemented by a 64*64 full crossbar switch with 512 PEs connected to each port 
of the switch. It allows data to be sent from one PE to another PE, an arbitrary 
distance away, in constant time. The peak switch bandwidth is 280 megabytes per 
second. The switch also allows the PE array to perform data reduction operations, 
such as taking the sum or maximum over data elements distributed across all PEs. 

3 C++ PROGRAMMING ENVIRONMENT 

The purpose of the C++ programming environment is to allow a programmer to 
declare and manipulate vectors on the MM32k as if they were variables in a pro­
gram running on the host computer. Programming is performed entirely on the 
host, using standard MS-DOS or Windows compatible C++ compilers. The C++ 
programming environment for the MM32k is built around a C++ class, named 
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Figure 1: A block diagram of the MM32k. 
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Figure 2: A block diagram of a single processing element (PE). 
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Table 1: 8 Bit Operations With 32768 and 262144 Elements 

8 bit 
operation 

copy 
vector+vector 
vector+scalar 
vector*vector 
vector*scalar 
vector>scalar 
align( vector ,scalar) 
sum( vector) 
maximum( vector) 

Actual MOPS 
with length 

of 32768 

1796 
1455 
1864 
206 
426 

1903 
186 
52 

114 

Actual MOPS 
with length 
of 262144 

9429 
2074 
3457 

215 
450 

6223 
213 
306 
754 

MM_ VECTOR, which represents a vector of integers. Most of the standard C 
arithmetic operators, such as +, -, *, I, =, and> have been overloaded to work 
with this class. Some basic functions, such as absolute value, square root, mini­
mum, maximum, align, and sum, have also been overloaded or defined to work with 
the class. 

The significance of the class MM_ VECTOR is that instances of it look and act 
like ordinary variables in a C++ program. So a programmer may add, subtract, 
assign, and manipulate these vector variables from a program running on the host 
computer, but the storage associated with them is in the SIMD memory and the 
vector operations are performed in parallel by the SIMD PEs. MM_ VECTORs can 
be longer than 32768. This is managed (transparent to the host program) by placing 
two or more vector elements in the SIMD memory of each PE. The class library 
keeps track of the number of words per PE. MM_ VECTORs can be represented by 
different numbers of bits. The class library automatically keeps track of the number 
of bits needed to represent each MM_ VECTOR without overflow. For example, if 
two 12 bit integers were added together, then 13 bits would be needed to represent 
the sum without overflow. The resulting MM_VECTOR would have 13 bits. This 
saves SIMD memory space and SIMD PE instruction cycles. The performance of 
the MM32k on simple operators running under the class library is listed in Table 1. 

4 NEURAL NETWORK EXAMPLES 

A common operation found in neural network classifiers (Kohonen, ART, etc.) is 
the multi-dimensional nearest-neighbor match. If the network has a large number 
of nodes, this operation is particularly inefficient on single processor systems, which 
must compute the distance metric for each node sequentially. Using the MM32k, the 
distance metrics for all nodes (up to 32768 nodes) can be computed simultaneously, 
and the identification of the minimum distance can be made using an efficient tree 
compare included in the system microcode. 
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Table 2: Speedup on Nearest Neighbor Search 

Processor Time for Time for MM32k MM32k 
32768 nodes 65536 nodes speedup for speedup for 

32768 nodes 65536 nodes 

MM32k 2.2 msec 3.1 msec 1:1 1:1 
i486 350 msec 700 msec 159:1 226:1 
MIPS 970 msec 1860 msec 441:1 600:1 
Alpha 81 msec 177 msec 37:1 57:1 
SPARC 410 msec 820 msec 186:1 265:1 

Figure 3 shows a C++ code example for performing a 16-dimensional nearest neigh­
bor search over 32768 nodes. The global MM_ VECTOR variable state[16] defines 
the 16-dimensionallocation of each node. Each logical element of state[ ] (state[O], 
state[l], etc.) is actually a vector with 32768 elements distributed across all pro­
cessors. The routine find_besLmatchO computes the euclidean distance between 
each node's state and the current test vector test_input[ ], which resides on the host 
processor. Note that the equations appear to be scalar in nature, but in fact direct 
vector operations to be performed by all processors simultaneously. 

The performance of the nearest neighbor search shown in Figure 3 is listed in Table 
2. Performance on the same task is also listed for four comparison processors: a 
Gateway2000 mode14DX2-66V with 66 MHz 80486 processor (i486), a DECstation 
5000 Model 200 with 25 MHz MIPS R3000A processor (MIPS), a DECstation 3000 
Model 500AXP with 150 MHz Alpha AXP processor (Alpha), and a Sun SPARC­
station 10 Model 30 with 33 MHz SuperSPARC processor (SPARC). There are 16 
subtractions, 16 additions, 16 absolute values, one global minimum, and one global 
first operation performed. The MM32k is tested on problems with 32768 and 65536 
exemplars and compared against four popular serial machines performing equivalent 
searches. The MM32k requires 3.1 milliseconds to search 65536 exemplars which is 
265 times faster than a SPARC 10. 

The flexibility of the MM32k for neural network applications was demonstrated 
by implementing compl~te fixed-point neural network paradigms on the MM32k 
and on the four comparison processors (Table 3). Three different neural network 
examples were evaluated. The first was a radial basis function network with 32,768 
basis functions (rational function approximations to gaussian functions). Each basis 
function had 9 8-bit inputs, 3 16-bit outputs (a vector basis function magnitude), 
and independent width parameters for each of the nine inputs. The performances 
listed in the table (RBF) are for feedforward response only. The second example 
was a Kohonen self-organizing network with a two-dimensional sheet of Kohonen 
nodes of dimension 200x150 (30,000 nodes). The problem was to map a nonlinear 
robotics forward kinematics transformation with eight degrees of freedom (8-bit 
parameters) onto the two-dimensional Kohonen layer. The performances listed in 
the table (Kohonen) are for self-organizing training. The third example problem 
was a neocognitron for target localization in a 256x256 8-bit input image. The first 
hidden layer of the neocognitron had 8 256x256 sheets of linear convolution units 
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1* declare 16-D ""32k exemplars *1 
""_VECTOR state[16] = { 

""_VECTOR(32168), ""_VECTOR(32168), 
""_VECTOR(32168), ""_VECTOR(32168), 
""_VECTOR(32168), ""_VECTOR(32168), 
""_VECTOR(32168) , ""_VECTOR(32168) , 
""_VECTOR(32168), ""_VECTOR(32168), 
""_VECTOR(32168), ""_VECTOR(32168), 
""_VECTOR(32168), ""_VECTOR(32168), 
""_VECTOR(32168) , ""_VECTOR(32168) 

}; 

1* return PE number of processor with closest match */ 
long find_best_match(long test_input[16]) 
{ 

} 

int i; 
""_VECTOR difference(32168); 
""_VECTOR distance(32168); 

1* differences *1 
1* distances *1 

1* compute the 16-D distance scores *1 
distance = OJ 
for (i=O; i<16; ++i) { 

difference = state[i] - test_input[i]; 
distance = distance + (difference * difference); 

} 

1* return the PE number for minimum distance *1 
return first(distance == minimum(distance»; 

Figure 3: A C++ code example implementing a nearest neighbor search. 
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Table 3: MM32k Speedup for Select Neural Network Paradigms 

Processor 

MM32k 
i486 
MIPS 
Alpha 
SPARC 

RBF 

1:1 
161:1 
180:1 

31:1 
94:1 

Kohonen NCGTRN 

1:1 1:1 
76:1 336:1 
69:1 207:1 
11:1 35:1 
49:1 378:1 

with 16x16 receptive fields in the input image. The second hidden layer of the 
neocognitron had 8 256x256 sheets of sigmoidal units (fixed-point rational function 
approximations to sigmoid functions) with 3x3x8 receptive fields in the first hidden 
layer. The output layer of the neocognitron had 256x256 sigmoidal units with 
3x3x8 receptive fields in the second hidden layer. The performances listed in the 
table (NCGTRN) correspond to feedforward response followed by backpropagation 
training. The absolute computation times for the MM32k were 5.1 msec, 10 msec, 
and 1.3 sec, for the RBF, Kohonen, and NCGTRN neural networks, respectively. 
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