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Abstract 

We present a neural network simulation which we implemented 
on the massively parallel Connection Machine 2. In contrast to 
previous work, this simulator is based on biologically realistic neu­
rons with nontrivial single-cell dynamics, high connectivity with a 
structure modelled in agreement with biological data, and preser­
vation of the temporal dynamics of spike interactions. We simulate 
neural networks of 16,384 neurons coupled by about 1000 synapses 
per neuron, and estimate the performance for much larger systems. 
Communication between neurons is identified as the computation­
ally most demanding task and we present a novel method to over­
come this bottleneck. The simulator has already been used to study 
the primary visual system of the cat. 

1 INTRODUCTION 

Neural networks have been implemented previously on massively parallel supercom­
puters (Fujimoto et al., 1992, Zhang et al., 1990). However, these are implemen­
tations of artificial, highly simplified neural networks, while our aim was explicitly 
to provide a simulator for biologically realistic neural networks. There is also at 
least one implementation of biologically realistic neuronal systems on a moderately 
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parallel but powerful machine (De Schutter and Bower, 1992) , but the complexity 
of the used neuron model makes simulation of larger numbers of neurons impracti­
cal. Our interest here is to provide an efficient simulator of large neural networks 
of cortex and related subcortical structures. 

The most important characteristics of the neuronal systems we want to simulate 
are the following: 

• Cells are highly interconnected (several thousand connections per cell) but 
far from fully interconnected. 

• Connections do not follow simple deterministic rules (like, e.g., nearest 
neighbor connections). 

• Cells communicate with each other via delayed spikes which are binary 
events ("all-or-nothing"). 

• Such communication events are short (1 ms) and infrequent (1 to 100 per 
second). 

• The temporal fine structure of the spike trains may be an important 
information carrier (Kreiter and Singer, 1992, Richmond and Optican , 
1990, Softky and Koch, 1993). 

2 IMPLEMENTATION 

The biological network was modelled as a set of improved integrate-and-fire neurons 
which communicate with each other via delayed impulses (spikes). The single-cell 
model and details of the connectivity have been described in refs. (Wehmeier et al., 
1989, Worgotter et al., 1991). 

Despite the rare occurrence of action potentials, their processing accounts for the 
major workload of the machine. The efficient implementation of inter-neuron com­
munication is therefore the decisive factor which determines the efficacy of the sim­
ulator implementation. By "spike propagation" we denote the process by which a 
neuron communicates the occurrence of an action potential to all its postsynaptic 
partners. While the most efficient computation of the neuronal equations is ob­
tained by mapping each neuron on one processor, this is very inefficient for spike 
propagation. This is due to the fact that spikes are rare events and that in the SIMD 
architecture used, each processor has to wait for the completion of the current tasks 
of all other processors. Therefore, only very few processors are active at any given 
time step. A more efficient data representation than provided by this "direct" algo­
rithm is shown in Fig. 1. In this "transposed" scheme, a processor changes its role 
from simulating one of the neurons to simulating one synapse, which is, in general, 
not a synapse of the neuron simulated by the processor (see legend of Fig. 1). At 
any given time step, the addresses of the processors representing spiking neurons are 
broadcast along binary trees which are implemented efficiently (in time wmplexity 
log2M for M processors) in a hypercube architecture such as the CM-2. We obtain 
further computational efficiency by dividing the processor array into "partitions" of 
size M and by implementing partially parallel I/O scheduling (both not discussed 
here). 
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Figure 1: Transposed storage method for connections. The storage space for each 
of the N processors is represented by a vertical column. A small part of this space 
is used for the time-dependent variables describing each of the N neurons (upper 
part of each column, "Cell data"). The main part of the storage is used for datasets 
consisting of the addresses, weights and delays of the synapses ("Synapse data"), 
represented by the indices i, j in the figure. For instance, "1, I" stands for the first 
synapse of neuron 1, "1,2" for the second synapse of this neuron and so on. Note 
that the storage space of processor i does not hold the synapses of neuron i. If 
neuron i generates a spike, all M processors are used for propagating the spike 
(black arrows) 
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3 PERFORMANCE ANALYSIS 

In order to accurately compare the performance of the described spike propagation 
algorithms, we implemented both the direct algorithm and the transposed algorithm 
and compared their performances with analytical estimates. 
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Figure 2: Execution time for the direct algorithm (diamonds) and the transposed 
algorithm (crosses) as function of the spiking probability p for each cell. If all cells 
fire at each time step, there is no advantage for the transposed algorithm; in fact, 
it is at a disadvantage due to the overhead discussed in the text. Therefore, the 
two curves cross at a value just below p = 1. As expected, the largest difference 
between them is found for the smallest values of p. 

Figure 2 compares the time required for the direct algorithm to the time required 
for the transposed algorithm as a function of p, the average number of spikes per 
neuron per time step. Note that while the time required rises much more rapidly for 
the transposed algorithm than the direct algorithm, it takes significantly less time 
for p < 0.5. The peak speedup was a factor of 454 which occurred at p = 0.00012 
(or 1.2 impulses per second at a timestep of O.lms, corresponding approximately to 
spontaneous spike rates). The absolutely highest possible speedup, obtained if there 
is exactly one spike in every partition at every time step, is equal to M (M == 1024 
in this simulation). The average speedup is determined by the maximal number of 
spiking neurons per time step in any partition, since the processors in all partitions 
have to wait until the last partition has propagated all of its spikes. The average 
maximal number of spikes in a system of N partitions, each one consisting of M 
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neurons IS 

M N 

Nmar(p, M, N) = {; k J; ( ~ ) TI(k)mft(k)N-m (1) 

where p is the spiking probability of one cell, II(k) is the probability that a given 
partition has k spikes and 

k-l 

IT(k) = L II(i) (2) 
i=O 
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Figure 3: Speedup of the transposed algorithm over the direct algorithm as a func­
tion of p for different VP ratios; M = 1024. The ideal speedup (uppermost curve; 
diamonds), computed in eq. 3 essentially determines the observed speedup. (lower 
curves; "+" signs: VP-ratio=1, diamonds: VP-raio=2, crosses: VP-ratio=4.). The 
difference between the ideal and the effectively obtained speedup is due to commu­
nication and other overhead of the transposed algorithm. Note that the difference 
in speedup for different VP ratios (difference between lower curves) is relatively 
small, which shows that the penalty for using larger neuron numbers is not large. 
As expected, the speedup approaches unity for p ~ 1 in all cases. 

It can be shown that for independent neurons and for low spike rates, II( k) is the 
Poisson distribution and IT(k) the incomplete r function. The average maximal 
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number of spikes for M = 1024 and different values of P (eq. 1) can be shown to be 
a mildly growing function of the number of partitions which shows that the perfor­
mance will not be limited crucially by changing the number of partitions. Therefore, 
the algorithm scales well with increasing network size and the performance-limiting 
factor is the activity level in the network and not the size of the network. This is 
also evident in Fig. 3 which shows the effectively obtained speedup compared to the 
ideal speedup, which would be obtained if the transposed algorithm were limited 
only by eq. 1 and would not require any additional communication or other over­
head. Using Nmax(P, M, N) from eq. 1 it is clear that this ideal speedup is given 
by 

M 
(3) 

Nmax(P, M, N) 

The difference between theory and experiment can be attributed to the time re­
quired for the spread operation and other additional overhead associated with the 
transposed algorithm. At P = 0.0010 (or 10 ips) the obtained speedup is a factor 
of 106. 

4 VERY LARGE SYSTEMS 

U sing the full local memory of the machine and the "Virtual Processor" capabil­
ity of the CM-2, the maximal number of neurons that can be simulated without 
any change of algorithm is as high as 4,194,304 ("4M"). Figure 3 shows that the 
speedup is reduced only slightly as the number of neurons increases, when the addi­
tional neurons are simulated by virtual processors . The performance is essentially 
limited by the mean network activity, whose effect is expressed by eq. 3, and the 
additional overhead originating from the higher "VP ratio" is small. This corrob­
orates our earlier conclusion that the algorithm scales well with the size of the 
simulated system. Although we did not study the scaling of execution time with 
the size of the simulated system for more than 16,384 real processors, we expect the 
total execution time to be basically independent of the number of neurons, as long 
as additional neurons are distributed on additional processors. 
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