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Abstract 

We investigate a model for neural activity that generates long range 
temporal correlations, 1/ f noise, and oscillations in global activity. 
The model consists of a two-dimensional sheet of leaky integrate­
and-fire neurons with feedback connectivity consisting of local ex­
citation and surround inhibition. Each neuron is independently 
driven by homogeneous external noise. Spontaneous symmetry 
breaking occurs, resulting in the formation of "hotspots" of activ­
ity in the network. These localized patterns of excitation appear 
as clusters that coalesce, disintegrate, or fluctuate in size while si­
multaneously moving in a random walk constrained by the interac­
tion with other clusters. The emergent cross-correlation functions 
have a dual structure, with a sharp peak around zero on top of 
a much broader hill . The power spectrum associated with single 
units shows a 1/ f decay for small frequencies and is flat at higher 
frequencies, while the power spectrum of the spiking activity aver­
aged over many cells-equivalent to the local field potential-shows 
no 1/ f decay but a prominent peak around 40 Hz. 
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1 The model 

The model consists of a 100-by-l00 lattice of integrate-and-fire units with cyclic 
lattice boundary conditions. Each unit represents the nerve cell membrane as a 
simple RC circuit (r = 20 msec) with the addition of a reset mechanism; the 
refractory period TreJ is equal to one iteration step (1 msec). 

Units are connected to each other within the layer by local excitatory and inhibitory 
connections in a center-surround pattern. Each unit is excitatorily connected to 
N = 50 units chosen from a Gaussian probability distribution of u = 2.5 (in terms 
of the lattice constant), centered at the unit's position N inhibitory connections 
per unit are chosen from a uniform probability distribution on a ring eight to nine 
lattice constants away. 

Once a unit reaches the threshold voltage, it emits a pulse that is transmitted in 
one iteration (1 msec) to connected neighboring units, and the potential is reset by 
subtracting the threshold from resting potential. 

\Ii(t + 1) = (exp( -l/r)\Ii(t) + h (t)) O[vth - V(t)]. (1) 
Ii is the input current, which is the sum of lateral currents from presynaptic units 
and external current. The lateral current leads to an increase (decrease) in the 
membrane potential of excitatory (inhibitorily ) connected cells. The weight of 
the excitation and inhibition, in units of voltage threshold, is ~ and J3 ~. The 
values a = 1.275 and J3 = 0.67 were used for simulations. The external input is 
modeled independently for each cell as a Poisson process of excitatory pulses of 
magnitude 1/ N, arriving at a mean rate "ext. Such a simple cellular model mimics 
reasonably well the discharge patterns of cortical neurons [Bernander et al., 1994, 
Softky and Koch, 1993]. 

2 Dynamics and Pattern Formation 

In the mean-field approximation, the firing rate of an integrate-and-fire unit is a 
function of the input current [Amit and Tsodyks, 1991] given by 

f(I) = (TreJ - r In[l - 1/(1 r)])-l, (2) 

where Tref is the refractory period and r the membrane time constant. 

In this approximation, the dynamics associated with eq. 1 simplify to 

~i = -Ii + L j Wijf(Ij) + Itxt , (3) 

where Wij represents the connection strength matrix from unit j to unit i. 

Homogeneous firing activity throughout the network will result as long as the con­
nectivity pattern satisfies W(k)-l < 0 for all k, where W(k) is the Fourier transform 
of Wij . As one increases the total strength of lateral connectivity, clusters of high 
firing activity develop. These clusters form a hexagonal grid across the network; for 
even stronger lateral currents, the clusters merge to form stripes. 

The transition from a homogeneous state to hexagonal clusters to stripes is generic 
to many nonequilibrium systems in fluid mechanics, nonlinear optics, reaction­
diffusion systems, and biology. (The classic theory for fluid mechanics was first 
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developed by [Newell and Whitehead, 1969], see [Cross and Hohenberg, 1993] for 
an extensive review. Cowan (1982) was the first to suggest applying the techniques 
of fluid mechanics to neural systems.) 

The richly varied dynamics of the model, however, can not be captured by a mean­
field description. Clusters in the quasi-hexagonal state coalesce, disintegrate, or 
fluctuate in size while simultaneously moving in a random walk constrained by the 
interaction with other clusters. 
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Figure 1: On the left, the summed firing activity for the network over 50 msec of 
simulation is shown. Lighter shades denote higher firing rates (maximum firing rate 
120 Hz). Note the nearly hexagonal pattern of clusters or "hotspots" of activity. 
On the right, we illustrate the motion of a typical cluster. Each vertex in the graph 
represents a tracked cluster's position averaged over 50 msec. Repulsive interactions 
with surrounding clusters generally constrain the motion to remain within a certain 
radius. This vibratory motion of a cluster is occasionally punctuated by longer­
range diffusion. 

Statistical fluctuations, diffusion and synchronization of clusters, and noise in the 
external input driving the system lead to 1/ I-noise dynamics, long-range correla­
tions, and oscillations in the local field potential. These issues shall be explored 
next. 

3 1/ f Noise 

The power spectra of spike trains from individual units are similar to those pub­
lished in the literature for nonbursting cells in area MT in the behaving mon­
key [Bair et al., 1994]. Power spectra were generally flat for all frequencies above 
100 Hz. The effective refractory period present in an integrate-and-fire model in­
troduces a dip at low frequencies (also seen in real data). Most noteworthy is the 
l/lo.s component in the power spectrum at low frequencies. Notice that in order 
to see such a decay for very low frequencies in the spectrum, single units must be 
recorded for on the order of 10-100 sec, longer than the recording time for a typical 
trial in neurophysiology. 

We traced a cluster of neuronal activity as it diffused through the system, and 
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Figure 2: Typical power spectrum and lSI distribution of single units over 400 sec 
of simulation. At low frequencies, the power spectrum behaves as f- O.S ±O.017 up 
to a cut-off frequency of ~ 8 Hz. The lSI distribution on the right is shown on a 
log-log scale. The lSI histogram decays as a power law pet) ex t-1.70±O.02 between 
25 and 300 msec. In contrast, a system with randomized network connections will 
have a Poisson-distributed lSI histogram which decays exponentially. 

measured the lSI distribution at a fixed point relative to the cluster center. In the 
cluster frame of reference, activity should remain fairly constant, so we expect and 
do find an interspike interval (lSI) distribution with a single characteristic relaxation 
time: 

Pr(t) = A(r)exp(-tA(r)) , 

where the firing rate A(r) is now only a function of the distance r in cluster coordi­
nates. Thus Pr(t) is always Poisson for fixed r. 

If a cluster diffuses slowly compared to the mean interspike interval, a unit at a 
fixed position samples many lSI distributions of varying A(r) as the cluster moves. 
The lSI distribution in the fixed frame reference is thus 

pet) = j A(r)2 exp( -t A(r»)dr. (4) 

Depending on the functional form of A(r), pet) (the lSI distribution for a unit at 
a fixed position) will decay as a power law, and not as an exponential. Empirically, 
the distribution of firing rates as a function of r can be approximated (roughly) by 
a Gaussian. A Gaussian A(r) in eq. 4 leads to pet) f'oi t- 2 for t at long times. In 
turn, a power-law (fractal) pet) generates 1/ f noise (see Table 1). 

4 Long-Range Cross-Correlations 

Excitatory cross-correlation functions for units separated by small distances consist 
of a sharp peak at zero mean time delay followed by a slower decay characterized 
by a power law with exponent -0.21 until the function reaches an asymptotic level. 
Nelson et al. (1992) found this type of cross-correlation between neurons-a "castle 
on a hill" -to be the most common form of correlation in cat visual cortex. Inhibitory 
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cross-correlations show a slight dip that is much less pronounced than the sharp 
excitatory peak at short time-scales. 
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Figure 3: Cross-correlation functions between cells separated by d units of the 
lattice. Given the center-surround geometry of connections, the upper curve corre­
sponds to mutually excitatory coupling and the lower to mutually inhibitory cou­
pling. Correlations decay as l/tO.21 , consistent with a power spectrum of single 
spike trains that behaves as 1/ fo .8. 

Since correlations decay slowly in time due to the small exponent of the power, 
long temporal fluctuations in the firing rate result, as the 1/ f-type power spectra of 
single spike trains demonstrate. These fluctuations in turn lead to high variability 
in the number of events over a fixed time period. 

In fact, the decay in the auto-correlation and power spectrum, as well as the rise 
in the variability in the number of events, can be related back to the slow de­
cay in the interspike interval (lSI) distribution. If the lSI distribution decays 
as a power law pet) ,...., t- II , then the point process giving rise to it is fractal 
with a dimension D = v-I [Mandelbrot, 1983]. Assuming that the simula­
tion model can be described as a fully ergodic renewal process, all these quanti­
ties will scale together [Cox and Lewis, 1966, Teich, 1989, Lowen and Teich, 1993, 
Usher et al., 1994]: 
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Table 1: Scaling Relations and Empirical Results 

Var(N) Auto-correlation Power Spectrum lSI Distribution 

Var(N) "-J Nil A(t) "-J t ll - 2 S(I) "-J /-11+1 pet) ""' t- II 

Var(N) '" N1.54 A(t) "-J t- 0 .21 S(I) ""' /-0.81 pet) "-J c1.7O 

These relations will be only approximate if the process is nonrenewal or nonergodic, 
or if power-laws hold over a limited range. The process in the model is clearly non­
renewal, since the presence of a cluster makes consecutive short interspike intervals 
for units within that cluster more likely than in a renewal process. Hence, we expect 
some (slight) deviations from the scaling relations outlined above. 

5 Cluster Oscillations and the Local Field Potential 

The interplay between the recurrent excitation that leads to nucleation of clusters 
and the "firewall" of inhibition that restrains activity causes clusters of high activity 
to oscillate in size. Fig 4 is the power spectrum of ensemble activity over the size 
of a typical cluster. 
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Figure 4: Power spectrum of the summed spiking activity over a circular area the 
size of a single cluster (with a radius of 9 lattice constants) recorded from a fixed 
point on the lattice for 400 seconds. Note the prominent peak centered at 43 Hz 
and the loss of the 1// component seen in the single unit power spectra (Fig. 2). 

These oscillations can be understood by examining the cross-correlations between 
cells. By the Wiener-Khinchin theorem, the power spectrum of cluster activity is the 
Fourier transform of the signal's auto-correlation. Since the cluster activity is the 
sum of all single-unit spiking activity within a cluster of N cells, the autocorrelation 
of the cluster spiking activity will be the sum of N auto-correlations functions of the 
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individual cells and N x (N - 1) cross-correlation functions among individual cells 
within the cluster. The ensemble activity is thus dominated by cross-correlations. 

In general, the excitatory "castles" are sharp relative to the broad dip in the cross­
correlation due to inhibition (see Fig. 3). In Fourier space, these relationships 
are reversed: broader Fourier transforms of excitatory cross-correlations are paired 
with narrower Fourier transforms of inhibitory cross-correlations. Superposition of 
such transforms leads to a peak in the 30-70 Hz range and cancellation of the 1/ f 
component which was present the single unit power spectrum. 

Interestingly, the power spectra of spike trains of individual cells within the network 
(Fig. 2) show no evidence of a peak in this frequency band. Diffusion of clusters 
disrupts any phase relationship between single unit firing and ensemble activity. 

The ensemble activity corresponds to the local field potential in neurophysiological 
recordings. While oscillations between 30 and 90 Hz have often been seen in the 
local field potential (or sometimes even in the EEG) measured in cortical areas in 
the anesthetized or awake cat and monkey, these oscillations are frequently not or 
only weakly visible in multi- or single-unit data (e.g., [Eeckman and Freeman, 1990, 
Kreiter and Singer, 1992, Gray et al., 1990, Eckhorn et al., 1993]). We here offer a 
general explanation for this phenomenon. 
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