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Abstract 

In drug activity prediction (as in handwritten character recogni­
tion), the features extracted to describe a training example depend 
on the pose (location, orientation, etc.) of the example. In hand­
written character recognition, one of the best techniques for ad­
dressing this problem is the tangent distance method of Simard, 
LeCun and Denker (1993). Jain, et al. (1993a; 1993b) introduce a 
new technique-dynamic reposing-that also addresses this prob­
lem. Dynamic reposing iteratively learns a neural network and then 
reposes the examples in an effort to maximize the predicted out­
put values. New models are trained and new poses computed until 
models and poses converge. This paper compares dynamic reposing 
to the tangent distance method on the task of predicting the bio­
logical activity of musk compounds. In a 20-fold cross-validation, 
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dynamic reposing attains 91 % correct compared to 79% for the 
tangent distance method, 75% for a neural network with standard 
poses, and 75% for the nearest neighbor method. 

1 INTRODUCTION 

The task of drug activity prediction is to predict the activity of proposed drug 
compounds by learning from the observed activity of previously-synthesized drug 
compounds. Accurate drug activity prediction can save substantial time and money 
by focusing the efforts of chemists and biologists on the synthesis and testing of 
compounds whose predicted activity is high. If the requirements for highly active 
binding can be displayed in three dimensions, chemists can work from such displays 
to design new compounds having high predicted activity. 

Drug molecules usually act by binding to localized sites on large receptor molecules 
or large enyzme molecules. One reasonable way to represent drug molecules is 
to capture the location of their surface in the (fixed) frame of reference of the 
(hypothesized) binding site. By learning constraints on the allowed location of 
the molecular surface (and important charged regions on the surface), a learning 
algorithm can form a model of the binding site that can yield accurate predictions 
and support drug design. 

The training data for drug activity prediction consists of molecules (described by 
their structures, i.e., bond graphs) and measured binding activities. There are two 
complications that make it difficult to learn binding site models from such data. 

First, the bond graph does not uniquely determine the shape of the molecule. The 
bond graph can be viewed as specifying a (possibly cyclic) kinematic chain which 
may have several internal degrees of freedom (i.e., rotatable bonds). The confor­
mations that the graph can adopt, when it is embedded in 3-space, can be assigned 
energies that depend on such intramolecular interactions as the Coulomb attraction, 
the van der Waal's force, internal hydrogen bonds, and hydrophobic interactions. 
Algorithms exist for searching through the space of conformations to find local 
minima having low energy (these are called "conformers"). Even relatively rigid 
molecules may have tens or even hundreds of low energy conformers. The training 
data does not indicate which of these conformers is the "bioactive" one-that is, 
the conformer that binds to the binding site and produces the observed binding 
activity. 

Second, even if the bioactive conformer were known, the features describing the 
molecular surface-because they are measured in the frame of reference of the bind­
ing site-change as the molecule rotates and translates (rigidly) in space. 

Hence, if we consider feature space, each training example (bond graph) induces a 
family of 6-dimensional manifolds. Each manifold corresponds to one conformer as 
it rotates and translates (6 degrees of freedom) in space. For a classification task, 
a positive decision region for "active" molecules would be a region that intersects 
at least one manifold of each active molecule and no manifolds of any inactive 
molecules. Finding such a decision region is quite difficult, because the manifolds 
are difficult to compute. 
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A similar "feature manifold problem" arises in handwritten character recognition. 
There, the training examples are labelled handwritten digits, the features are ex­
tracted by taking a digitized gray-scale picture, and the feature values depend on 
the rotation, translation, and zoom of the camera with respect to the character. 

We can formalize this situation as follows. Let Xi, i = 1, ... , N be training exam­
ples (i.e., bond graphs or physical handwritten digits), and let I(Xi) be the label 
associated with Xi (i.e., the measured activity of the molecule or the identity of the 
handwritten digit). Suppose we extract n real-valued features V( Xi) to describe ob­
ject Xi and then employ, for example, a multilayer sigmoid network to approximate 
I(x) by j(x) = g(V(x». This is the ordinary supervised learning task. 

However, the feature manifold problem arises when the extracted features depend 
on the "pose" of the example. We will define the pose to be a vector P of parameters 
that describe, for example, the rotation, translation, and conformation of a molecule 
or the rotation, translation, scale, and line thickness of a handwritten digit. In this 
case, the feature vector V(x,p) depends on both the example and the pose. 

Within the handwritten character recognition community, several techniques have 
been developed for dealing with the feature manifold problem. Three existing ap­
proaches are standardized poses, the tangent-prop method, and the tangent-distance 
method. Jain et al. (1993a, 1993b) describe a new method-dynamic reposing­
that applies supervised learning simultaneously to discover the "best" pose pi of 
each training example Xi and also to learn an approximation to the unknown func­
tion I(x) as j(Xi) = g(V(Xi'p;». In this paper, we briefly review each of these 
methods and then compare the performance of standardized poses, tangent dis­
tance, and dynamic reposing to the problem of predicting the activity of musk 
molecules. 

2 FOUR APPROACHES TO THE FEATURE 
MANIFOLD PROBLEM 

2.1 STANDARDIZED POSES 

The simplest approach is to select only one of the feature vectors V( Xi, Pi) for each 
example by constructing a function, Pi = S(Xi), that computes a standard pose 
for each object. Once Pi is chosen for each example, we have the usual super­
vised learning task-each training example has a unique feature vector, and we can 
approximate 1 by j(x) = g(V(x, S(x»). 

The difficulty is that S can be very hard to design. In optical character recognition, 
S typically works by computing some pose-invariant properties (e.g., principal axes 
of a circumscribing ellipse) of Xi and then choosing Pi to translate, rotate, and scale 
Xi to give these properties standard values. Errors committed by OCR algorithms 
can often be traced to errors in the S function, so that characters are incorrectly 
positioned for recognition. 

In drug activity prediction, the standardizing function S must guess which con­
former is the bioactive conformer. This is exceedingly difficult to do without addi­
tional information (e.g., 3-D atom coordinates of the molecule bound in the binding 
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site as determined by x-ray crystallography). In addition, S must determine the 
orientation of the bioactive conformers within the binding site. This is also quite 
difficult-the bioactive conformers must be mutually aligned so that shared poten­
tial chemical interactions (e.g., hydrogen bond donors) are superimposed. 

2.2 TANGENT PROPAGATION 

The tangent-prop approach (Simard, Victorri, LeCun, & Denker, 1992) also em­
ploys a standardizing function S, but it augments the learning procedure with the 
constraint that the output of the learned function g(V( x, p)) should be invariant 
with respect to slight changes in the poses of the examples: 

II\7p g(V(x,p)) Ip=S(x) II = 0, 

where II . II indicates Euclidean norm. This constraint is incorporated by using the 
left-hand-side as a regularizer during backpropagation training. 

Tangent-prop can be viewed as a way of focusing the learning algorithm on those 
input features and hidden-unit features that are invariant with respect to slight 
changes in pose. Without the tangent-prop constraint, the learning algorithm 
may identify features that "accidentally" discriminate between classes. However, 
tangent-prop still assumes that the standard poses are correct. This is not a safe 
assumption in drug activity prediction. 

2.3 TANGENT DISTANCE 

The tangent-distance approach (Simard, LeCun & Denker, 1993) is a variant of the 
nearest-neighbor algorithm that addresses the feature manifold problem. Ideally, 
the best distance metric to employ for the nearest-neighbor algorithm with feature 
manifolds is to compute the "manifold distance"-the point of nearest approach 
between two manifolds: 

This is very expensive to compute, however, because the manifolds can have highly 
nonlinear shapes in feature space, so the manifold distance can have many local 
mInIma. 

The tangent distance is an approximation to the manifold distance. It is computed 
by approximating the manifold by a tangent plane in the vicinity of the standard 
poses. Let Ji be the Jacobian matrix defined by (Jdik = 8V(Xi,Pi)ij8(Pih, which 
gives the plane tangent to the manifold of molecule Xi at pose Pi. The tangent 
distance is defined as 

where PI = S(xI) and P2 = S(X2)' The column vectors a and b give the change 
in the pose required to minimize the distance between the tangent planes approx­
imating the manifolds. The values of a and b minimizing the right-hand side can 
be computed fairly quickly via gradient descent (Simard, personal communication). 
In practice, only poses close to S(xd and S(X2) are considered, but this provides 
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more opportunity for objects belonging to the same class to adopt poses that make 
them more similar to each other. 

In experiments with handwritten digits, Simard, LeCun, and Denker (1993) found 
that tangent distance gave the best performance of these three methods. 

2.4 DYNAMIC REPOSING 

All of the preceding methods can be viewed as attempts to make the final predicted 
output j(x) invariant with respect to changes in pose. Standard poses do this by 
not permitting poses to change. Tangent-prop adds a local invariance constraint. 
Tangent distance enforces a somewhat less local invariance constraint. 

In dynamic reposing, we make j invariant by defining it to be the maximum value 
(taken over all poses p) of an auxiliary function g: 

j(x) = max g(V(x,p)). 
p 

The function 9 will be the function learned by the neural network. 

Before we consider how 9 is learned, let us first consider how it can be used to 
predict the activity of a new molecule x'. To compute j(x'), we must find the pose 
p'. that maximizes g(V(x',p'*». We can do this by performing a gradient ascent 
starting from the standard pose S(x) and moving in the direction of the gradient 
of 9 with respect to the pose: \7plg(V(X',p'». 

This process has an important physical analog in drug activity prediction. If x' is 
a new molecule and 9 is a learned model of the binding site, then by varying the 
pose p' we are imitating the process by which the molecule chooses a low-energy 
conformation and rotates and translates to "dock" with the binding site. 

In handwritten character recognition, this would be the dual of a deformable tem­
plate model: the template (g) is held fixed, while the example is deformed (by 
rotation, translation, and scaling) to find the best fit to the template. 

The function 9 is learned iteratively from a growing pool of feature vectors. Initially, 
the pool contains only the feature vectors for the standard poses of the training ex­
amples (actually, we start with one standard pose of each low energy conformation 
of each training example). In iteration j, we apply backpropagation to learn hy­
pothesis gj from selected feature vectors drawn from the pool. For each molecule, 
one feature vector is selected by performing a forward propagation (i.e., computing 
9(V(Xi' Pi»)) of all feature vectors of that molecule and selecting the one giving the 
highest predicted activity for that molecule. 

After learning gj, we then compute for each conformer the pose P1+1 that maximizes 
gj(V(Xi' p»: 

·+1 Pi = argmax gj(V(Xi'p». 
p 

From the chemical perspective, we permit each of the molecules to "dock" to the 
current model gj of the binding site. 

·+1 The feature vectors V(Xi,Pi ) corresponding to these poses are added to the pool 
of poses, and a new hypothesis gj+l is learned. This process iterates until the poses 



A Comparison of Dynamic Reposing and Tangent Distance for Drug Activity Prediction 221 

cease to change. Note that this algorithm is analogous to the EM procedure (Redner 
& Walker, 1984) in that we accomplish the simultaneous optimization of 9 and the 
poses {Pi} by conducting a series of separate optimizations of 9 (holding {Pi} fixed) 
and {pd (holding 9 fixed). 

We believe the power of dynamic reposing results from its ability to identify the 
features that are critical for discriminating active from inactive molecules. In the 
initial, standard poses, a learning algorithm is likely to find features that "acciden­
tally" discriminate actives from inactives. However, during the reposing process, 
inactive molecules will be able to reorient themselves to resemble active molecules 
with respect to these features. In the next iteration, the learning algorithm is 
therefore forced to choose better features for discrimination. 

Moreover, during reposing, the active molecules are able to reorient themselves so 
that they become more similar to each other with respect to the features judged 
to be important in the previous iteration. In subsequent iterations, the learning 
algorithm can "tighten" its criteria for recognizing active molecules. 

In the initial, standard poses, the molecules are posed so that they resemble each 
other along all features more-or-Iess equally. At convergence, the active molecules 
have changed pose so that they only resemble each other along the features impor­
tant for discrimination. 

3 AN EXPERIMENTAL COMPARISON 

3.1 MUSK ACTIVITY PREDICTION 

We compared dynamic reposing with the tangent distance and standard pose meth­
ods on the task of musk odor prediction. The problem of musk odor prediction has 
been the focus of many modeling efforts (e.g., Bersuker, et al., 1991; Fehr, et al., 
1989; Narvaez, Lavine & Jurs, 1986). Musk odor is a specific and clearly iden­
tifiable sensation, although the mechanisms underlying it are poorly understood. 
Musk odor is determined almost entirely by steric (i.e., "molecular shape") effects 
(Ohloff, 1986). The addition or deletion of a single methyl group can convert an 
odorless compound into a strong musk. Musk molecules are similar in size and 
composition to many kinds of drug molecules. 

We studied a set of 102 diverse structures that were collected from published studies 
(Narvaez, Lavine & Jurs, 1986; Bersuker, et al., 1991; Ohloff, 1986; Fehr, et al., 
1989). The data set contained 39 aromatic, oxygen-containing molecules with musk 
odor and 63 homologs that lacked musk odor. Each molecule was conformation­
ally searched to identify low energy conformations. The final data set contained 
6,953 conformations of the 102 molecules (for full details of this data set, see Jain, 
et al., 1993a). Each of these conformations was placed into a starting pose via a 
hand-written S function. We then applied nearest neighbor with Euclidean dis­
tance, nearest neighbor with the tangent distance, a feed-forward network without 
reposing, and a feed-forward network with the dynamic reposing method. For dy­
namic reposing, five iterations of reposing were sufficient for convergence. The time 
required to compute the tangent distances far exceeds the computation times of 
the other algorithms. To make the tangent distance computations feasible, we only 
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Table 1: Results of 20-fold cross-validation on 102 musk molecules. 

Method Percent Correct 
Nearest neighbor (Euclidean distance) 75 
Neural network (standard poses) 75 
Nearest neighbor (Tangent distance) 79 
Neural network (dynamic reposing) 91 

Table 2: Neural network cross-class predictions (percent correct) 

N 

Molecular class: 

Standard poses 
Dynamic reposing 

85 
100 

76 
90 

74 
85 

57 
71 

computed the tangent distance for the 200 neighbors that were nearest in Euclidean 
distance. Experiments with a subset of the molecules showed that this heuristic in­
troduced no error on that subset. 

Table 1 shows the results of a 20-fold cross-validation of all four methods. The 
tangent distance method does show improvement with respect to a standard neu­
ral network approach (and with respect to the standard nearest neighbor method). 
However, the dynamic reposing method outperforms the other two methods sub­
stantially. 

An important test for drug activity prediction methods is to predict the activity 
of molecules whose molecular structure (i.e., bond graph) is substantially different 
from the molecules in the training set. A weakness of many existing methods for 
drug activity prediction (Hansch & Fujita, 1964; Hansch, 1973) is that they rely on 
the assumption that all molecules in the training and test data sets share a common 
structural skeleton. Because our representation for molecules concerns itself only 
with the surface of the molecule, we should not suffer from this problem. Table 2 
shows four structural classes of molecules and the results of "class holdout" exper­
iments in which all molecules of a given class were excluded from the training set 
and then predicted. Cross-class predictions from standard poses are not particularly 
good. However, with dynamic reposing, we obtain excellent cross-class predictions. 
This demonstrates the ability of dynamic reposing to identify the critical discrimi­
nating features. Note that the accuracy of the predictions generally is determined 
by the size of the training set (i.e., as more molecules are withheld, performance 
drops). The exception to this is the right-most class, where the local geometry of 
the oxygen atom is substantially different from the other three classes. 
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4 CONCLUDING REMARKS 

The "feature manifold problem" arises in many application tasks, including drug 
activity prediction and handwritten character recognition. A new method, dynamic 
reposing, exhibits performance superior to the best existing method, tangent dis­
tance, and to other standard methods on the problem of musk activity prediction. 
In addition to producing more accurate predictions, dynamic reposing results in a 
learned binding site model that can guide the design of new drug molecules. Jain, 
et al., (1993a) shows a method for visualizing the learned model in the context of 
a given molecule and demonstrates how the model can be applied to guide drug 
design. Jain, et al., (1993b) compares the method to other state-of-the-art meth­
ods for drug activity prediction and shows that feed-forward networks with dynamic 
reposing are substantially superior on two steroid binding tasks. The method is cur­
rently being applied at Arris Pharmaceutical Corporation to aid the development 
of new pharmaceutical compounds. 
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