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Abstract 

Survival is enhanced by an ability to predict the availability of food, 
the likelihood of predators, and the presence of mates. We present a 
concrete model that uses diffuse neurotransmitter systems to implement 
a predictive version of a Hebb learning rule embedded in a neural ar­
chitecture based on anatomical and physiological studies on bees. The 
model captured the strategies seen in the behavior of bees and a number of 
other animals when foraging in an uncertain environment. The predictive 
model suggests a unified way in which neuromodulatory influences can 
be used to bias actions and control synaptic plasticity. 

Successful predictions enhance adaptive behavior by allowing organisms to prepare for fu­
ture actions, rewards, or punishments. Moreover, it is possible to improve upon behavioral 
choices if the consequences of executing different actions can be reliably predicted. Al­
though classical and instrumental conditioning results from the psychological literature [1] 
demonstrate that the vertebrate brain is capable of reliable prediction, how these predictions 
are computed in brains is not yet known. 

The brains of vertebrates and invertebrates possess small nuclei which project axons 
throughout large expanses of target tissue and deliver various neurotransmitters such as 
dopamine, norepinephrine, and acetylcholine [4]. The activity in these systems may report 
on reinforcing stimuli in the world or may reflect an expectation of future reward [5, 6,7,8]. 
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A particularly striking example is that of the honeybee. Honeybees can be conditioned to 
a sensory stimulus such as a color, visual pattern, or an odorant when the sensory stimulus 
is paired with application of sucrose to the antennae or proboscis. An identified neuron, 
VUMmxl, projects widely throughout the entire bee brain, becomes active in response 
to sucrose, and its firing can substitute for the unconditioned odor stimulus in classical 
conditioning experiments [8]. Similar diffusely projecting neurons in the bee brain may 
substitute for reward when paired with a visual stimulus. 

In this paper, we suggest a role for diffuse neurotransmitter systems in learning and behavior 
that is analogous to the function we previously postulated for them in developmental self­
organization[3, 2]. Specifically, we: (i) identify a neural substrate/architecture which is 
known to exist in both vertebrates and invertebrates and which delivers information to 
widespread regions of the brain; (ii) describe an algorithm that is both mathematically 
sound and biologically feasible; and (iii) show that a version of this local algorithm, in the 
context of the neural architecture, reproduces the foraging and decision behavior observed 
in bumble bees and a number of other animals. 

Our premise is that the predictive relationships between sensory stimuli and rewards are 
constructed through these diffuse systems and are used to shape both ongoing behavior and 
reward-dependent synaptic plasticity. We illustrate this using a simple example from the 
ethological literature for which constraints are available at a number of different levels. 

A Foraging Problem 

Real and colleagues [9, 10] performed a series of experiments on bumble bees foraging on 
artificial flowers whose colors, blue and yellow, predicted of the delivery of nectar. They 
examined how bees respond to the mean and variability of this reward delivery in a foraging 
version of a stochastic two-armed bandit problem [11]. All the blue flowers contained 2\-1l 
of nectar, l of the yellow flowers contained 6 \-1l, and the remaining j of the yellow flowers 
contained no nectar at all. In practice, 85% of the bees' visits were to the constant yield 
blue flowers despite the equivalent mean return from the more variable yellow flowers. 
When the contingencies for reward were reversed, the bees switched their preference for 
flower color within 1 to 3 visits to flowers. They further demonstrated that the bees could be 
induced to visit the variable and constant flowers with equal frequency if the mean reward 
from the variable flower type was made sufficiently high. 

This experimental finding shows that bumble bees, like honeybees, can learn to associate 
color with reward. Further, color and odor learning in honeybees has approximately the 
same time course as the shift in preference descri bed above for the bumble bees [12]. It also 
indicates that under the conditions of a foraging task, bees prefer less variable rewards and 
compute the reward availability in the short term. This is a behavioral strategy utilized by 
a variety of animals under similar conditions for reward [9, 10, 13] suggesting a common 
set of constraints in the underlying neural substrate. 

The Model 

Fig. 1 shows a diagram of the model architecture, which is based on the considerations 
above about diffuse systems. Sensory input drives the units 'B' and 'Y' representing blue 
and yellow flowers. These neurons (outputs x~ and xi respectively at time t) project 
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Figure 1: Neural architecture showing how predictions about future expected rein­
forcement can be made in the brain using a diffuse neurotransmitter system [3, 2]. In 
the context of bee foraging [9], sensory input drives the units Band Y representing blue and 
yellow flowers. These units project to a reinforcement neuron P through a set of variable 
weights (filled circles w B and w Y) and to an action selection system. Unit S provides input 
to n and fires while the bee sips the nectar. R projects its output rt through a fixed weight 
to P. The variable weights onto P implement predictions about future reward rt (see text) 
and P's output is sensitive to temporal changes in its input. The output projections of P, bt 

(lines with arrows), influence learning and also the selection of actions such as steering in 
flight and landing, as in equation 5 (see text). Modulated lateral inhibition (dark circle) in 
the action selection layer symbolizes this. Before encountering a flower and its nectar, the 
output of P will reflect the temporal difference only between the sensory inputs Band Y. 
During an encounter with a flower and nectar, the prediction error bt is determined by the 
output of B or Y and R, and learning occurs at connections w B and w Y. These strengths 
are modified according to the correlation between presynaptic activity and the prediction 
error bt produced by neuron P as in equation 3 (see text). Learning is restricted to visits to 
flowers [14]. 

through excitatory connection weights both to a diffusely projecting neuron P (weights 
w B and w Y) and to other processing stages which control the selection of actions such as 
steering in flight and landing. P receives additional input rt through unchangeable wei~hts. 
In the absence of nectar (rt = 0), the net input to P becomes Vt = Wt ·Xt = w~x~ +wt x~. 

The first assumption in the construction of this model is that learning (adjustment of 
weights) is contingent upon approaching and landing on a flower. This assumption is 
supported specifically by data from learning in the honeybee: color learning for flowers is 
restricted to the final few seconds prior to landing on the flower and experiencing the nectar 
[14]. 

This fact suggests a simple model in which the strengths of variable connections Wt are 
adjusted according to a presynaptic correlational rule: 

(1 ) 

where oc is the learning rate [15]. There are two problems with this formulation: (i) learning 
would only occur about contingencies in the presence of a reinforcing stimulus (rt =/: 0); 
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Figure 2: Simulations of bee foraging behavior using predictive Hebbian learning. A) 
Reinforcement neuron output as a function of nectar volume for a fixed concentration of 
nectar[9, 10]. B) Proportion of visits to blue flowers. Each trial represents approximately 
40 flower visits averaged over 5 real bees and exactly 40 flower visits for a single model 
bee. Trials 1 - 15 for the real and model bees had blue flowers as the constant type, the 
remaining trials had yellow flowers as constant. At the beginning of each trial, wYand w B 

were set to 0.5 consistent with evidence that information from past foraging bouts is not 
used[14]. The real bees were more variable than the model bees - sources of stochasticity 
such as the two-dimensional feeding ground were not represented. The real bees also had a 
slight preference for blue flowers [21]. Note the slower drop for A = 0.1 when the flowers 
are switched. 

and (ii) there is no provision for allowing a sensory event to predict the future delivery of 
reinforcement. The latter problem makes equation 1 inconsistent with a substantial volume 
of data on classical and instrumental conditioning [16]. Adding a postsynaptic factor to 
equation 1 does not alter these conclusions [17]. 

This inadequacy suggests that another form of learning rule and a model in which P has a 
direct input from rt. Assume that the firing rate of P is sensitive only to changes in its input 
over time and habituates to constant or slowly varying input, like magnocellular ganglion 
cells in the retina [18]. Under this assumption, the output of P, bt. reflects a temporal 
derivative of its net input, approximated by: 

(2) 

where y is a factor that controls the weighting of near against distant rewards. We take 
y = 1 for the current discussion. 

In the presence of the reinforcement, the weights w B and w Y are adjusted according to the 
simple correlational rule: 

(3) 

This permits the weights onto P to act as predictions of the expected reward consequent 
on landing on a flower and can also be derived in a more general way for the prediction of 
future values of any scalar quantity [19]. 
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Figure 3: Tradeoff between the mean and variance of nectar delivery. A) Method of 
selecting indifference points. The indifference point is taken as the first mean for a given 
variance (bold v in legend) for which a stochastic trial demonstrates the indifference. This 
method of calculation tends to bias the indifference points to the left. B) Indifference plot 
for model and real bees. Each point represents the (mean, variance) pair for which the 
bee sampled each flower type equally. The circles are for A = 0.1 and the pluses are for 
A = 0.9. 

When the bee actually lands on a flower and samples the nectar, R influences the output of 
P through its fixed connection (Fig. 1). Suppose that just prior to sampling the nectar the 
bee switched to viewing a blue flower, for example. Then, since Tt -l = 0, lit would be 
Tt - x~_1 w~_I. In this way, the term x~_1 w~_1 is a prediction of the value of Tt and the 
difference Tt - x~_1 wt 1 is the error in that prediction. Adjusting the weight w~ according 
to the correlational rule in equation 3 allows the weight w~, through P's outputs, to report 
to the rest of the brain the amount of reinforcement Tt expected from blue flowers when 
they are sensed. 

As the model bee flies between flowers, reinforcement from nectar is not present (Tt = 0) 
and lit is proportional to V t - V t- 1. w B and w Y can again be used as predictions but through 
modulation of action choice. For example, suppose the learning process in equation 3 sets 
w Y less than w B• In flight, switching from viewing yellow flowers to viewing blue flowers 
causes lit to be positive and biases the activity in any action selection units driven by 
outgoing connections from B. This makes the bee more likely than chance to land on or 
steer towards blue flowers. This discussion is not offered as an accurate model of action 
choice, rather, it simply indicates how output from a diffuse system could also be used to 
influence action choice. 

The biological assumptions of this neural architecture are explicit: (i) the diffusely pro­
jecting neuron changes its firing according to the temporal difference in its inputs; (ii) the 
output of P is used to adjust its weights upon landing; and (iii) the output otherwise biases 
the selection of actions by modulating the activity of its target neurons. 

For the particular case of the bee, both the learning rule described in equation 3 and the 
biasing of action selection described above can be further simplified for the purposes of a 
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simple demonstration. As mentioned above, significant learning about a particular flower 
color may occur only in the 1 - 2 seconds just prior to an encounter [21, 14]. This 
is tantamount to restricting weight changes to each encounter with the reinforcer which 
allows only the sensory input just preceding the delivery or non-delivery of r t to drive 
synaptic plasticity. We therefore make the learning rule punctate, updating the weights on 
a flower by flower basis. During each encounter with the reinforcer in the environment, P 
produces a prediction error cSt = rt - Vt-l where rt is the actual reward at time t, and the 
last flower color seen by the bee at time t, say blue, causes a prediction V t -l = wt lX~_l 
of future reward rt to be made through the weight w~_l and the input activity xt l' The 
weights are then updated using a form of the delta rule[20]: 

(4) 

where A is a time constant and controls the rate of forgetting. In this rule, the weights from 
the sensory input onto P still mediate a prediction of r; however, the temporal component 
for choosing how to steer and when to land has been removed. 

We model the temporal biasing of actions such as steering and landing with a probabilistic 
algorithm that uses the same weights onto P to choose which flower is actually visited 
on each trial. At each flower visit, the predictions are used directly to choose an action, 
according to: 

e~(WYxY) 

q(Y) = e~(wBxB) + ell(wYxY) (5) 

where q(Y) is the probability of choosing a yellow flower. Values of J.L > 0 amplify the 
difference between the two predictions so that larger values of J.L make it more likely that 
the larger prediction will result in choice toward the associated flower color. In the limit as 
J.L ---+ 00 this approaches a winner-take-all rule. In the simulations, J.L was varied from 2.8 to 
6.0 and comparable results obtained. Changing J.L alters the magnitude of the weights that 
develop onto neuron P since different values of J.L enforce different degrees of competition 
between the predictions. 

To apply the model to the foraging experiment, it is necessary to specify how the amount of 
nectar in a particular flower gets reported to P. We assume that the reinforcement neuron 
R delivers its signal rt as a saturating function of nectar volume (Fig. 2A). Harder and 
Real [10] suggest just this sort of decelerating function of nectar volume and justify it on 
biomechanical grounds. Fig. 2B shows the behavior of model bees compared with that of 
real bees [9] in the experiment testing the extent to which they prefer a constant reward to 
a variable reward of the same long-term mean. Further details are presented in the figure 
legend. 

The behavior of the model matched the observed data for A = 0.9 suggesting that the real 
bee utilizes information over a small time window for controlling its foraging [9]. At this 
value of A, the average proportion of visits to blue was 85% for the real bees and 83% 
for the model bees. The constant and variable flower types were switched at trial 15 and 
both bees switched flower preference in 1 - 3 subsequent visits. The average proportion 
of visits to blue changed to 23% and 20%, respectively, for the real and model bee. Part of 
the reason for the real bees' apparent preference for blue may come from inherent biases. 
Honey bees, for instance, are known to learn about shorter wavelengths more quickly than 
others [21]. In our model, A is a measure of the length of time over which an observation 
exerts an influence on flower selection rather than being a measure of the bee's time horizon 
in terms of the mean rate of energy intake [9, 10]. 
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Real bees can be induced to forage equally on the constant and variable flower types if the 
mean reward from the variable type is made sufficiently large, as in Fig. 3B. For a given 
variance, the mean reward was increased until the bees appeared indifferent between the 
flowers. In this experiment, the constant flower type contained 0.5J.11 of nectar. The data 
for the real bee is shown as points connected by a solid line in order to make clear the 
envelope of the real data. The indifference points for A = 0.1 (circles) and A = 0.9 (pluses) 
also demonstrate that a higher value of A is again better at reproducing the bee's behavior. 
The model captured both the functional relationship and the spread of the real data. 

The diffuse neurotransmitter system reports prediction errors to control learning and bias 
the selection of actions. Distributing such a signal diffusely throughout a large set of 
target structures permits this prediction error to influence learning generally as a factor in a 
correlational or Hebbian rule. The same signal, in its second role, biases activity in an action 
selection system to favor rewarding behavior. In the model, construction of the prediction 
error only requires convergent input from sensory representations onto a neuron or neurons 
whose output is a temporal derivative of its input. The output of this neuron can also be 
used as a secondary reinforcer to associate other sensory stimuli with the predicted reward. 
We have shown how this relatively simple predictive learning system closely simulates the 
behavior of bumble bees in a foraging task. 
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