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Abstract 

This paper introduces a new recognition-based segmentation ap­
proach to recognizing on-line cursive handwriting from a database 
of 10,000 English words. The original input stream of z, y pen coor­
dinates is encoded as a sequence of uniform stroke descriptions that 
are processed by six feed-forward neural-networks, each designed 
to recognize letters of different sizes. Words are then recognized by 
performing best-first search over the space of all possible segmen­
tations. Results demonstrate that the method is effective at both 
writer dependent recognition (1.7% to 15.5% error rate) and writer 
independent recognition (5.2% to 31.1% error rate). 

1 Introduction 

With the advent of pen-based computers, the problem of automatically recognizing 
handwriting from the motions of a pen has gained much significance. Progress has 
been made in reading disjoint block letters [Weissman et. ai, 93]. However, cursive 
writing is much quicker and natural for humans, but poses a significant challenge to 
pattern recognition systems because of its variability, ambiguity and need to both 
segment and recognize the individual letters. Recent techniques employing self­
organizing networks are described in [Morasso et. ai, 93] and [Schomaker, 1993]. 
This paper presents an alternative approach based on feed-forward networks. 

On-line handwriting consists of writing with a pen on a touch-terminal or digitizing 
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Figure 1: The five principal stages of preprocessing: (a) The original data, z, Y 
values sampled every 10mS. (b) The slant is normalized through a shear transfor­
mation; (c) Stroke boundaries are determined at points where y velocity equals 0 or 
pen-up or pen-down events occur; (d) Delayed strokes are reordered and associated 
with corresponding strokes of the same letters; (e) Each stroke is resampled in space 
to correspond to exactly 8 points. Note pen-down strokes are shown as thick lines, 
pen-up strokes as thin lines. 
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tablet. The device produces a regular stream of z, y coordinates, describing the 
positions of the pen while writing. Hence the problem of recognizing on-line cur­
sively written words is one of mapping a variable length sequence of z, y coordinates 
to a variable length sequence of letters. Developing a system that can accurately 
perform this mapping faces two principal problems: First, because handwriting is 
done with little regularity in speed, there is unavoidable variability in input size. 
Second, because no pen-up events or spatial gaps signal the end of one letter and the 
beginning of the next, the system must perform both segmentation and recognition. 

This second problem necessitates the development of a recognition-based segmenta­
tion approach. In [Schenkel et al., 93] one such approach is described for connected 
block letter recognition where the system learns to recognize segmentation points. 
In this paper an alternative method is presented that first performs exhaustive 
recognition then searches the space of possible segmentations. The remainder of 
the paper describes the method in more detail and presents results that demon­
strate its effectiveness at recognizing a variety of cursive handwriting styles. 

2 Methodology 

The recognition system consists of three subsystems: (a) the preprocessor that maps 
the initial stream of z, y coordinates to a stream of stroke descriptions; (b) the letter 
classifier that learns to recognize individual letters of different size; and ( c) the word 
finder that performs recognition-based segmentation over the output of the letter 
classifier to identify the most likely word written. 

2.1 Preprocessing 

The preprocessing stage follows steps outlined in [Guerfali & Plamondon, 93] and 
is illustrated in Figure 1. First the original data is smoothed by passing it through 
a low-pass filter, then reslanted to make the major stroke directions vertical. This 
is achieved by computing the mean angle of all the individual lines then applying 
a shear transformation to remove it. Second, the strokes boundaries are identified 
as points when if = 0 or when the pen is picked up or put down. Zero y velocity 
was chosen rather than minimum absolute velocity [Morasso et. ai, 93] since it was 
found to be more robust. Third, delayed strokes such as those that dot an i or cross 
a t are reordered to be associated with their corresponding letter. Here the delayed 
stroke is placed to immediately follow the closest down stroke and linked into the 
stroke sequence by straight line pen-up strokes. Fourth, each stroke is resampled in 
the space domain (using linear interpolation) so as to represent it as exactly eight 
z, y coordinates. Finally the new stream of z, y coordinates is converted to a stream 
of 14 feature values. 

Eight of these features are similar to those used in [Weissman et. ai, 93], and repre­
sent the angular acceleration (as the sin and cos of the angle), the angular velocity 
of the line (as the sin and cos of the angle), the z, y coordinates (z has a linear 
ramp removed), and first differential ox,Oy. One feature denotes whether the pen 
was down or up when the line was drawn. The remaining features encode more 
abstract information about the stroke. 
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Figure 2: The pyramid-style architecture of the network used to recognize 2 stroke 
letters. The input size is 32 x 14; 32 is from the 4 input strokes (each represented by 
8 resampled points), two central strokes from the letter and the 2 context strokes, 
one each side; 14 is from the number of features employed to represent each point. 
Not all the receptive fields are shown. The first hidden layer consists of 7 fields, 
4 over each stroke and 3 more spanning the stroke boundaries. The next hidden 
layer consists of 5 fields, each spanning 3 x 20 inputs. The output is a 32 bit 
error-correcting code. 
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Figure 3: Examples of the class "other" for stroke sizes 1 though 6. Each letter is 
a random fragment of a word, such that it is not an alphabetic letter. 
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2.2 Letter Recognition 

The letter classifier consists of six separate pyramid-style neural-networks, each 
with an architecture suitable for recognizing a letter of one through six strokes. 
A neural network designed to recognize letters of size j strokes encodes a map­
ping from a sequence of j + 2 stroke descriptions to a 32 bit error-correcting code 
[Dietterich & Bakiri, 91]. Experiments have shown this use of a context window 
improves performance, since the allograph of the current letter is dependent on the 
allographs of the previous and following letters. The network architecture for stroke 
size two is illustrated in Figure 2. The architecture is similar to a time-delayed 
neural-network [Lang & Waibel, 90] in that the hierarchical structure enables dif­
ferent levels of abstract features to be learned. However, the individual receptive 
fields are not shared as in a TDNN, since translational variance is not problem and 
the sequence of data is important. 

The networks are trained using 80% of the raw data collected. This set is further 
divided into a training and a verification set. All training and verification data is 
preprocessed and hand segmented, via a graphical interface, into letter samples. 
These are then sorted according to size and assembled into distinct training and 
verification sets. It is often the case that the same letter will appear in multiple 
size files due to variability in writing and different contexts (such as when an 0 is 
followed by a 9 it is at least a 3 stroke allograph, while an 0 followed by an 1 is 
usually only a two stroke allograph). Included in these letter samples are samples 
of a new letter class "other," illustrated in Figure 3. Experiments demonstrated 
that use of an "other" class tightens decision boundaries and thus prevents spurious 
fragments-of which there are many during performance-from being recognized as 
real letters. Each network is trained using back-propagation until correctness on 
the verification set is maximized, usually requiring less than 100 epochs. 

2.3 Word Interpreter 

To identify the correct word, the word interpreter explores the space of all possible 
segmentations of the input stroke sequence. First, the input sequence is partitioned 
into all possible fragments of size one through six, then the appropriately sized 
network is used to classify each fragment. An example of this process is illustrated 
as a matrix in Figure 4(a). 

The word interpreter then performs a search of this matrix to identify candidate 
words. Figure 4(b) and Figure 4(c) illustrates two sets of candidate words found 
for the example in Figure 4(a). Candidates in this search process are generated 
according to the following constraints: 

• A legal segmentation point of the input stream is one where no two adja­
cent fragments overlap or leave a gap. To impose this constraint the i'th 
fragment of size j may be extended by all of the i + j fragments, if they 
exist. 

• A legal candidate letter sequence must be a subsequence of a word in the 
provided lexicon of expected English words. 
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Figure 4: (a) The matrix of fragments and their classifications that is generated by 
applying the letter recognizers to a sample of the word are. The original handwriting 
sample, following preprocessing, is given at the top of the matrix. The bottom row 
of the matrix corresponds to all fragments of size one (with zero overlap), the second 
row to all fragments of size two (with an overlap of one stroke) etc. The column 
of letters in each fragment box represents the letter classifications generated by 
the neural network of appropriate size. The higher the letter in the column, the 
more confident the classification. Those fragments with no high scoring letter were 
recognized as examples of the class "other." (b) The first five candidates found by 
the word recognizer employing no lexicon. The first column is the word recognized, 
the second column is the score for that word, the third is the sequence of fragments 
and their classifications. (c) The first five candidates found by the word recognizer 
employing a lexicon of 10748 words. 
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In a forward search, a candidate of size n consists of: (a) a legal sequence of frag­
ments It, 12, .. . , In that form a prefix of the input stroke sequence, (b) a sequence 
of letters It, 12 , • •• , In that form a prefix of an English word from the given dictio­
nary and (c) a score s for this candidate, defined as the average letter recognition 
error: 

E?-l 6(1., Ii) 
8 = ==---:.,;...;.,,;.~ 

n 
where 6(/i, Ii) is the hamming distance between letter Is's code and the actual code 
produced by the neural network when given Ii as input. This scoring function is 
the same as employed in [Edelman et. ai, 90]. 

The best word candidate is one that conforms with the constraints and has the 
lowest score. Although this is a reasonable scoring function, it is easy to show 
that it is not admissible when used as an evaluation function in forward search. 
With a forward search, problems arise when the prefix of the correct word is poorly 
recognized. To help combat this problem without greatly increasing the size of the 
search space, both forward and backward search is performed. 

Search is initiated by first generating all one letter and one fragment prefix and suffix 
candidates. Then at each step in the search, the candidate with the lowest score is 
expanded by considering the cross product of all legal letter extensions (according to 
the lexicon) with all legal fragment extensions (according to the fragment-sequence 
constraints) . The list of candidates is maintained as a heap for efficiency. The search 
process terminates when the best candidate satisfies: (1) the letter sequence is a 
complete word in the lexicon and (2) the fragment sequence uses all the available 
input strokes. 

The result of this bi-directional search process is illustrated in Figure 4(a)(b), where 
the five best candidates found are given for no lexicon and a large lexicon. The use 
of a 10,748 word lexicon eliminates meaningless fragment sequences, such as cvre, 
which is a reasonable segmentation, but not in the lexicon. The first two candidates 
are the same fragment sequence, found by the two search directions. The third 
candidate with a 10,748 word dictionary illustrates an alternative segmentation of 
the correct word. This candidate was identified by a backward search, but not a 
forward search, due to the poor recognition of the first fragment. 

3 Evaluation 

To evaluate the system, 10 writers have provided samples of approximately 100 
words picked by a random process, biased to better represent uncommon letters. 
Two kinds of experiments were performed. First, to test the ability of the system to 
learn a variety of writing styles, the system was tested and trained on distinct sets 
of samples from the same writer. This experiment was repeated 10 times, once for 
each writer. The error rate varied between 1.7% and 15.5%, with a mean of 6.2%, 
when employing a database of 10,748 English words. The second experiments tested 
the ability of the system to recognize handwriting of a writer not represented in the 
training set. Here the set of 10 samples were split into two sets, the training set 
of 9 writers with the remaining 1 writer being the test set. The error rate was 
understandably higher, varying between 5.2% and 31.1%, with a mean of 10.8%, 
when employing a database of 10,748 English words. 
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4 Summary 

This paper has presented a recognition-based segmentation approach for on-line 
cursive handwriting. The method is very flexible because segmentation is performed 
following exhaustive recognition. Hence, we expect the method to be successful 
with more natural unconstrained writing, which can include mixed block, cursive 
and disjoint letters, diverse orderings of delayed strokes, overwrites and erasures. 
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