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Abstract 

Although recurrent neural nets have been moderately successful 
in learning to emulate finite-state machines (FSMs), the continu­
ous internal state dynamics of a neural net are not well matched 
to the discrete behavior of an FSM. We describe an architecture, 
called DOLCE, that allows discrete states to evolve in a net as learn­
ing progresses. DOLCE consists of a standard recurrent neural net 
trained by gradient descent and an adaptive clustering technique 
that quantizes the state space. DOLCE is based on the assumption 
that a finite set of discrete internal states is required for the task, 
and that the actual network state belongs to this set but has been 
corrupted by noise due to inaccuracy in the weights. DOLCE learns 
to recover the discrete state with maximum a posteriori probabil­
ity from the noisy state. Simulations show that DOLCE leads to a 
significant improvement in generalization performance over earlier 
neural net approaches to FSM induction. 

1 INTRODUCTION 

Researchers often try to understand-post hoc-representations that emerge in the 
hidden layers of a neural net following training. Interpretation is difficult because 
these representations are typically highly distributed and continuous. By "contin­
uous," we mean that if one constructed a scatterplot over the hidden unit activity 
space of patterns obtained in response to various inputs, examination at any scale 
would reveal the patterns to be broadly distributed over the space. 

Continuous representations aren't always appropriate. Many task domains seem to 
require discrete representations-representations selected from a finite set of alter­
natives. If a neural net learned a discrete representation, the scatterplot over hidden 
activity space would show points to be superimposed at fine scales of analysis. Some 

19 



20 Das and Mozer 

examples of domains in which discrete representations might be desirable include: 
finite-state machine emulation, data compression, language and higher cognition 
(involving discrete symbol processing), and categorization in the context of decision 
making. In such domains, standard neural net learning procedures, which have 
a propensity to produce continuous representations, may not be appropriate. The 
work we report here involves designing an inductive bias into the learning procedure 
in order to encourage the formation of discrete internal representations. 

In the recent years, various approaches have been explored for learning discrete 
representations using neural networks (McMillan, Mozer, & Smolensky, 1992; Mozer 
& Bachrach, 1990; Mozer & Das, 1993; Schiitze, 1993; Towell & Shavlik, 1992). 
However, these approaches are domain specific, making strong assumptions about 
the nature of the task. In our work, we describe a general methodology that makes 
no assumption about the domain to which it is applied, beyond the fact that discrete 
representations are desireable. 

2 FINITE STATE MACHINE INDUCTION 

We illustrate the methodology using the domain of finite-state machine (FSM) 
induction. An FSM defines a class of symbol strings. For example, the class (lOt 
consists of all strings with one or more repetitions of 10; 101010 is a positive example 
of the class, 111 is a negative example. An FSM consists principally of a finite set 
of states and a function that maps the current state and the current symbol of the 
string into a new state. Certain states of the FSM are designated "accept" states, 
meaning that if the FSM ends up in these states, the string is a member of the 
class. The induction problem is to infer an FSM that parsimoniously characterizes 
the positive and negative exemplars, and hence characterizes the underlying class. 

A generic recurrent net architecture that could be used for FSM emulation and 
induction is shown on the left side of Figure 1. A string is presented to the input 
layer of the net, one symbol at a time. Following the end of the string, the net 
should output whether or not the string is a member of the class. The hidden unit 
activity pattern at any point during presentation of a string corresponds to the 
internal state of an FSM. 

Such a net, trained by a gradient descent procedure, is able to learn to perform this 
or related tasks (Elman, 1990; Giles et al., 1992; Pollack, 1991; Servan-Schreiber, 
Cleeremans, & McClelland, 1991; Watrous & Kuhn, 1992). Although these models 
have been relatively successful in learning to emulate FSMs, the continuous internal 
state dynamics of a neural net are not well matched to the discrete behavior of FSMs. 
Roughly, regions of hidden unit activity space can be identified with states in an 
FSM, but because the activities are continuous, one often observes the network 
drifting from one state to another. This occurs especially with input strings longer 
than those on which the network was trained. 

To achieve more robust dynamics, one might consider quantizing the hidden state. 
Two approaches to quantization have been explored previously. In the first, a net 
is trained in the manner described above. After training, the hidden state space is 
partitioned into disjoint regions and each hidden activity pattern is then discretized 
by mapping it to the center of its corresponding region (Das & Das, 1991; Giles 
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Figure 1: On the left is a generic recurrent architecture that could be used for FSM induc­
tion. Each box corresponds to a layer of units, and arrows depict complete connectivity 
between layers. At each time step, a new symbol is presented on the input and the input 
and hidden representations are integrated to form a new hidden representation. On the 
right is the general architecture of DOLCE. 

et al., 1992). In a second approach, quantization is enforced during training by 
mapping the the hidden state at each time step to the nearest corner of a [0,1]" 
hypercube (Zeng, Goodman, & Smyth, 1993). 

Each of these approaches has its limitations. In the first approach, because learning 
does not consider the latter quantization, the hidden activity patterns that result 
from learning may not lie in natural clusters. Consequently, the quantization step 
may not group together activity patterns that correspond to the same state. In the 
second approach, the quantization process causes the error surface to have discon­
tinuities and to be flat in local neighborhoods of the weight space. Hence, gradient 
descent learning algorithms cannot be used; instead, even more heuristic approaches 
are required. To overcome the limitations of these approaches, we have pursued an 
approach in which quantization is an integral part of the learning process. 

3 DOLCE 

Our approach incorporates a clustering module into the recurrent net architecture, 
as shown on the right side of Figure 1. The hidden layer activities are processed by 
the clustering module before being passed on to other layers. The clustering module 
maps regions in hidden state space to a single point in the same space, effectively 
partitioning or clustering the hidden state space. Each cluster corresponds to a 
discrete internal state. The clusters are adaptive and dynamic, changing over the 
course of learning. We call this architecture DOLCE, for gynamic Qn-!ine £lustering 
and state extraction. 

The DOLCE architecture may be explored along two dimensions: (1) the clustering 
algorithm used (e.g., a Gaussian mixture model, ISODATA, the Forgy algorithm, 
vector quantization schemes), and (2) whether supervised or unsupervised training 
is used to identify the clusters. In unsupervised mode, the performance error on 
the FSM induction task has no effect on the operation of the clustering algorithm; 
instead, an internal criterion characterizes goodness of clusters. In supervised mode, 
the primary measure that affects the goodness of a cluster is the performance error. 
Regardless of the training mode, all clustering algorithms incorporate a pressure to 
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Figure 2: Two dimensions of a typical state space. The true states needed to perform 
the task are Cl, C3, and C3, while the observed hidden states, asswned to be corrupted by 
noise, are distributed about the Ci. 

produce a small number of clusters. Additionally, as we elaborate more specifically 
below, the algorithms must allow for a soft or continuous clustering during training, 
in order to be integrated into a gradient-based learning procedure. 

We have explored two possibilities for the clustering module. The first involves 
the use of Forgy's algorithm in an unsupervised mode. Forgy's (1965) algorithm 
determines both the number of clusters and the partitioning of the space. The 
second uses a Gaussian mixture model in a supervised mode, where the mixture 
model parameters are adjusted so as to minimize the performance error. Both 
approaches were successful, but as the latter approach obtained better results, we 
describe it in the next section. 

4 CLUSTERING USING A MIXTURE MODEL 

Here we motivate the incorporation of a Gaussian mixture model into DOLCE, us­
ing an argument that gives the approach a solid theoretical foundation. Several 
assumptions underly the approach. First, we assume that the task faced by DOLCE 

is such that it requires a finite set of internal or true states, C = {Clt C2, ••. , CT}. 

This is simply the premise that motivates this line of work. Second, we assume 
that any observed hidden state-i.e., a hidden activity pattern that results from 
presentation of a symbol sequence-belongs to C but has been corrupted by noise 
due to inaccuracy in the network weights. Third, we assume that this noise is Gaus­
sian and decreases as learning progresses (i.e., as the weights are adjusted to better 
perform the task). These assumptions are depicted in Figure 2. 

Based on these assumptions, we construct a Gaussian mixture distribution that 
models the observed hidden states: 

T 

p(hlC tT q) = ~ qi e-lh-c.12 /2q~ 
" L...J (27r0'~)H/2 

i=l • 

where h denotes an observed hidden state, 0'; the variance of the noise that cor­
rupts state Ci, qi is the prior probability that the true state is Ci, and H is the 
dimensionality of the hidden state space. For pedagogical purposes, a.ssume for the 
time being that the parameters of the mixture distribution-T, C, tT, and q-are 
all known; in a later section we discuss how these parameters are determined. 
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Figure 3: A schematic depiction of the hidden state space before and after training. The 
horizontal plane represents the state space. The bumps indicate the probability density 
under the mixture model. Observed hidden states are represented by small open circles. 

Given a noisy observed hidden state, h, DOLCE computes the maximum a posteriori 
(MAP) estimator of h in C. This estimator then replaces the noisy state and is used 
in all subsequent computation. The MAP estimator, h, is computed as follows. The 
probability of an observed state h being generated by a given true state i is 

p(hltrue state i) = (27rlTi)-!fe-lh-cill/2u:. 

Using Bayes' rule, one can compute the posterior probability of true state i, given 
that h has been observed: 

( .Ih) p(hltrue state i)qi p true state z = =---'---'-------'----L:j p(hltrue state j)qj 

Finally, the MAP estimator is given by it = Cargmax,p(true state ilh). However, 
because learning requires that DOLCE's dynamics be differentiable, we use a soft 
version of MAP which involves using ii = L:i cip(true state ilh) instead of hand 
incorporating a "temperature" parameter into lTi as described below. 

An important parameter in the mixture model is T, the number of true states 
(Gaussians bumps). Because T directly corresponds to the number of states in 
the target FSM, if T is chosen too small, DOLCE could not emulate the FSM. 
Consequently, we set T to a large value, and the training procedure includes a 
technique for eliminating unnecessary true states. (If the initially selected T is not 
large enough, the training procedure will not converge to zero error on the training 
set, and the procedure can be restarted with a larger value of T.) 

At the start of training, each Gaussian center I Ci, is initialized to a random location 
in the hidden state space. The standard deviations of each Gaussian, lTi, are initially 
set to a large value. The priors, qi, are set to liT. The weights are set to initial 
values chosen from the uniform distribution in [-.25,.25]. All connection weights 
feeding into the hidden layer are second order. 

The network weights and mixture model parameters-C, iT, and q-are adjusted by 
gradient descent in a cost measure, C. This cost includes two components: (a) the 
performance error, £, which is a squared difference between the actual and target 
network output following presentation of a training string, and (b) a complexity 
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Figure 4: Each graph depicts generalization performance on one of the Tomita languages 
for 5 alternative neural net approaches: no clustering [Ne), rigid quantization [RQ), learn 
then quantize [LQ], DOLCE in unsupervised mode using Forgy's algorithm [DF], DOLCE 

in supervised mode using mixture model [DG) . The vertical axis shows the number of 
misclassification of 3000 test strings. Each bar is the average result across 10 replications 
with different initial weights. 

cost, which is the entropy of the prior distribution, q: 

where ..\ is a regularization parameter. The complexity cost is minimal when only 
one Gaussian has a nonzero prior, and maximal when all priors are equal. Hence, 
the cost encourages unnecessary Gaussians to drop out of the mixture model. 

The particular gradient descent procedure used is a generalization of back propa­
gation through time (Rumelhart, Hinton, & Williams, 1986) that incorporates the 
mixture model. To better condition the search space and to avoid a constrained 
search, optimization is performed not over iT and q directly but rather over hyper­
parameters a and h, where u; = exp(ai)/,B and qi = exp( -bl)/E j exp( -bj). 
The global parameter ,B scales the overall spread of the Gaussians, which corre­
sponds to the level of noise in the model. As performance on the training set 
improves, we assume that the network weights are coming to better approximate 
the target weights, hence that the level of noise is decreasing. Thus, we tie ,B to 
the performance error e. We have used various annealing schedules and DOLCE 

appears robust to this variation; we currently use {3 ex 1/ e. Note that as £ --+ 0, 
{3 --+ 00 and the probability density under one Gaussian at h will become infinitely 
greater than the density under any other; consequently, the soft MAP estimator, 
h, becomes equivalent to the MAP estimator h, and the transformed hidden state 
becomes discrete. A schematic depiction of the probability landscape both before 
and after training is depicted in Figure 3. 



A Unified Gradient-Descent/Clustering Architecture for Finite State Machine Induction 25 

5 SIMULATION STUDIES 

The network was trained on a set ofregular languages first studied by Tomita (1982). 
The languages, which utilize only the symbols 0 and 1, are: (1) 1·; (2) (10)·; (3) no 
odd number of consecutive 1 's is directly followed by an odd number of consecutive 
O's; (4) any string not containing the substring "000"; (5) , [(01110)(01110)].; (6) 
the difference between the number of ones and number of zeros in the string is a 
multiple of three; and (7) 0·1· 0·1· . 

A fixed training corpus of strings was generated for each language, with an equal 
number of positive and negative examples. The maximum string length varied from 
5 to 10 symbols and the total number of examples varied from 50 to 150, depending 
on the difficulty of the induction task. 

Each string was presented one symbol at a time, after which DOLCE was given a 
target output that specified whether the string was a positive or negative example 
of the language. Training continued until DOLCE converged on a set of weights 
and mixture model parameters. Because we assume that the training examples are 
correctly classified, the error £ on the training set should go to zero when DOLCE has 
learned. If this did not happen on a given training run, we restarted the simulation 
with different initial random weights. 

For each language, ten replications of DOLCE (with the supervised mixture model) 
were trained, each with different random initial weights. The learning rate and 
regularization parameter .\ were chosen for each language by quick experimentation 
with the aim of maximizing the likelihood of convergence on the training set. We 
also trained a version of DOLCE that clustered using the unsupervised Forgy algo­
rithm, as well as several alternative neural net approaches: a generic recurrent net, 
as shown on the left side of Figure 1, which used no clustering [NC]; a version with 
rigid quantization during training [RQ], comparable to the earlier work of Zeng, 
Goodman, and Smyth (1993); and a version in which the unsupervised Forgyalgo­
rithm was used to quantize the hidden state following training [LQ], comparable to 
the earlier work of Das and Das (1991). In these alternative approaches, we used 
the same architecture as DOLCE except for the clustering procedure. We selected 
learning parameters to optimize performance on the training set, ran ten replica­
tions for each language, replaced runs which did not converge, and used the same 
training sets. 

6 RESULTS AND CONCLUSION 

In Figure 4, we compare the generalization performance of DOLCE-both the unsu­
pervised Forgy [DF] and supervised mixture model [DG]-to the NC, RQ, and LQ 
approaches. Generalization performance was tested using 3000 strings not in the 
training set, half positive examples and half negative. The two versions of DOLCE 
outperformed the alternative neural net approaches, and the DG version of DOLCE 
consistently outperformed the DF version. 

To summarize, we have described an approach that incorporates inductive bias into 
a learning algorithm in order to encourage the evolution of discrete representations 
during training. This approach is a quite general and can be applied to domains 
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other than grammaticality judgement where discrete representations might be de­
sirable. Also, this approach is not specific to recurrent networks and may be applied 
to feedforward networks. We are now in the process of applying DOLCE to a much 
larger, real-world problem that involves predicting the next symbol in a string. The 
data base comes from a case study in software engineering, where each symbol 
represents an operation in the software development process. This data is quite 
noisy and it is unlikely that the data can be parsimoniously described by an FSM. 
Nonetheless, our initial results are encouraging: DOLCE produces predictions at 
least three times more accurate than a standard recurrent net without clustering. 
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