
A Unified Gradient-Descent/Clustering
Architecture for

Finite State Machine Induction

Sreerupa Das and Michael C. Mozer
Department of Computer Science

University of Colorado
Boulder, CO 80309-0430

Abstract

Although recurrent neural nets have been moderately successful
in learning to emulate finite-state machines (FSMs), the continu­
ous internal state dynamics of a neural net are not well matched
to the discrete behavior of an FSM. We describe an architecture,
called DOLCE, that allows discrete states to evolve in a net as learn­
ing progresses. DOLCE consists of a standard recurrent neural net
trained by gradient descent and an adaptive clustering technique
that quantizes the state space. DOLCE is based on the assumption
that a finite set of discrete internal states is required for the task,
and that the actual network state belongs to this set but has been
corrupted by noise due to inaccuracy in the weights. DOLCE learns
to recover the discrete state with maximum a posteriori probabil­
ity from the noisy state. Simulations show that DOLCE leads to a
significant improvement in generalization performance over earlier
neural net approaches to FSM induction.

1 INTRODUCTION

Researchers often try to understand-post hoc-representations that emerge in the
hidden layers of a neural net following training. Interpretation is difficult because
these representations are typically highly distributed and continuous. By "contin­
uous," we mean that if one constructed a scatterplot over the hidden unit activity
space of patterns obtained in response to various inputs, examination at any scale
would reveal the patterns to be broadly distributed over the space.

Continuous representations aren't always appropriate. Many task domains seem to
require discrete representations-representations selected from a finite set of alter­
natives. If a neural net learned a discrete representation, the scatterplot over hidden
activity space would show points to be superimposed at fine scales of analysis. Some

19

20 Das and Mozer

examples of domains in which discrete representations might be desirable include:
finite-state machine emulation, data compression, language and higher cognition
(involving discrete symbol processing), and categorization in the context of decision
making. In such domains, standard neural net learning procedures, which have
a propensity to produce continuous representations, may not be appropriate. The
work we report here involves designing an inductive bias into the learning procedure
in order to encourage the formation of discrete internal representations.

In the recent years, various approaches have been explored for learning discrete
representations using neural networks (McMillan, Mozer, & Smolensky, 1992; Mozer
& Bachrach, 1990; Mozer & Das, 1993; Schiitze, 1993; Towell & Shavlik, 1992).
However, these approaches are domain specific, making strong assumptions about
the nature of the task. In our work, we describe a general methodology that makes
no assumption about the domain to which it is applied, beyond the fact that discrete
representations are desireable.

2 FINITE STATE MACHINE INDUCTION

We illustrate the methodology using the domain of finite-state machine (FSM)
induction. An FSM defines a class of symbol strings. For example, the class (lOt
consists of all strings with one or more repetitions of 10; 101010 is a positive example
of the class, 111 is a negative example. An FSM consists principally of a finite set
of states and a function that maps the current state and the current symbol of the
string into a new state. Certain states of the FSM are designated "accept" states,
meaning that if the FSM ends up in these states, the string is a member of the
class. The induction problem is to infer an FSM that parsimoniously characterizes
the positive and negative exemplars, and hence characterizes the underlying class.

A generic recurrent net architecture that could be used for FSM emulation and
induction is shown on the left side of Figure 1. A string is presented to the input
layer of the net, one symbol at a time. Following the end of the string, the net
should output whether or not the string is a member of the class. The hidden unit
activity pattern at any point during presentation of a string corresponds to the
internal state of an FSM.

Such a net, trained by a gradient descent procedure, is able to learn to perform this
or related tasks (Elman, 1990; Giles et al., 1992; Pollack, 1991; Servan-Schreiber,
Cleeremans, & McClelland, 1991; Watrous & Kuhn, 1992). Although these models
have been relatively successful in learning to emulate FSMs, the continuous internal
state dynamics of a neural net are not well matched to the discrete behavior of FSMs.
Roughly, regions of hidden unit activity space can be identified with states in an
FSM, but because the activities are continuous, one often observes the network
drifting from one state to another. This occurs especially with input strings longer
than those on which the network was trained.

To achieve more robust dynamics, one might consider quantizing the hidden state.
Two approaches to quantization have been explored previously. In the first, a net
is trained in the manner described above. After training, the hidden state space is
partitioned into disjoint regions and each hidden activity pattern is then discretized
by mapping it to the center of its corresponding region (Das & Das, 1991; Giles

A Unified Gradient-Descent/Clustering Architecture for Finite State Machine Induction 21

Figure 1: On the left is a generic recurrent architecture that could be used for FSM induc­
tion. Each box corresponds to a layer of units, and arrows depict complete connectivity
between layers. At each time step, a new symbol is presented on the input and the input
and hidden representations are integrated to form a new hidden representation. On the
right is the general architecture of DOLCE.

et al., 1992). In a second approach, quantization is enforced during training by
mapping the the hidden state at each time step to the nearest corner of a [0,1]"
hypercube (Zeng, Goodman, & Smyth, 1993).

Each of these approaches has its limitations. In the first approach, because learning
does not consider the latter quantization, the hidden activity patterns that result
from learning may not lie in natural clusters. Consequently, the quantization step
may not group together activity patterns that correspond to the same state. In the
second approach, the quantization process causes the error surface to have discon­
tinuities and to be flat in local neighborhoods of the weight space. Hence, gradient
descent learning algorithms cannot be used; instead, even more heuristic approaches
are required. To overcome the limitations of these approaches, we have pursued an
approach in which quantization is an integral part of the learning process.

3 DOLCE

Our approach incorporates a clustering module into the recurrent net architecture,
as shown on the right side of Figure 1. The hidden layer activities are processed by
the clustering module before being passed on to other layers. The clustering module
maps regions in hidden state space to a single point in the same space, effectively
partitioning or clustering the hidden state space. Each cluster corresponds to a
discrete internal state. The clusters are adaptive and dynamic, changing over the
course of learning. We call this architecture DOLCE, for gynamic Qn-!ine £lustering
and state extraction.

The DOLCE architecture may be explored along two dimensions: (1) the clustering
algorithm used (e.g., a Gaussian mixture model, ISODATA, the Forgy algorithm,
vector quantization schemes), and (2) whether supervised or unsupervised training
is used to identify the clusters. In unsupervised mode, the performance error on
the FSM induction task has no effect on the operation of the clustering algorithm;
instead, an internal criterion characterizes goodness of clusters. In supervised mode,
the primary measure that affects the goodness of a cluster is the performance error.
Regardless of the training mode, all clustering algorithms incorporate a pressure to

22 Das and Mozer

o

Figure 2: Two dimensions of a typical state space. The true states needed to perform
the task are Cl, C3, and C3, while the observed hidden states, asswned to be corrupted by
noise, are distributed about the Ci.

produce a small number of clusters. Additionally, as we elaborate more specifically
below, the algorithms must allow for a soft or continuous clustering during training,
in order to be integrated into a gradient-based learning procedure.

We have explored two possibilities for the clustering module. The first involves
the use of Forgy's algorithm in an unsupervised mode. Forgy's (1965) algorithm
determines both the number of clusters and the partitioning of the space. The
second uses a Gaussian mixture model in a supervised mode, where the mixture
model parameters are adjusted so as to minimize the performance error. Both
approaches were successful, but as the latter approach obtained better results, we
describe it in the next section.

4 CLUSTERING USING A MIXTURE MODEL

Here we motivate the incorporation of a Gaussian mixture model into DOLCE, us­
ing an argument that gives the approach a solid theoretical foundation. Several
assumptions underly the approach. First, we assume that the task faced by DOLCE

is such that it requires a finite set of internal or true states, C = {Clt C2, ••. , CT}.

This is simply the premise that motivates this line of work. Second, we assume
that any observed hidden state-i.e., a hidden activity pattern that results from
presentation of a symbol sequence-belongs to C but has been corrupted by noise
due to inaccuracy in the network weights. Third, we assume that this noise is Gaus­
sian and decreases as learning progresses (i.e., as the weights are adjusted to better
perform the task). These assumptions are depicted in Figure 2.

Based on these assumptions, we construct a Gaussian mixture distribution that
models the observed hidden states:

T

p(hlC tT q) = ~ qi e-lh-c.12 /2q~
" L...J (27r0'~)H/2

i=l •

where h denotes an observed hidden state, 0'; the variance of the noise that cor­
rupts state Ci, qi is the prior probability that the true state is Ci, and H is the
dimensionality of the hidden state space. For pedagogical purposes, a.ssume for the
time being that the parameters of the mixture distribution-T, C, tT, and q-are
all known; in a later section we discuss how these parameters are determined.

A Unified Gradient-Descent/Clustering Architecture for Finite State Machine Induction 23

h
o

000 0
00 0 OOOO!,~OO

o 0 7 0 ~

~O 0

A

before training after successful training

Figure 3: A schematic depiction of the hidden state space before and after training. The
horizontal plane represents the state space. The bumps indicate the probability density
under the mixture model. Observed hidden states are represented by small open circles.

Given a noisy observed hidden state, h, DOLCE computes the maximum a posteriori
(MAP) estimator of h in C. This estimator then replaces the noisy state and is used
in all subsequent computation. The MAP estimator, h, is computed as follows. The
probability of an observed state h being generated by a given true state i is

p(hltrue state i) = (27rlTi)-!fe-lh-cill/2u:.

Using Bayes' rule, one can compute the posterior probability of true state i, given
that h has been observed:

(.Ih) p(hltrue state i)qi p true state z = =---'---'-------'----L:j p(hltrue state j)qj

Finally, the MAP estimator is given by it = Cargmax,p(true state ilh). However,
because learning requires that DOLCE's dynamics be differentiable, we use a soft
version of MAP which involves using ii = L:i cip(true state ilh) instead of hand
incorporating a "temperature" parameter into lTi as described below.

An important parameter in the mixture model is T, the number of true states
(Gaussians bumps). Because T directly corresponds to the number of states in
the target FSM, if T is chosen too small, DOLCE could not emulate the FSM.
Consequently, we set T to a large value, and the training procedure includes a
technique for eliminating unnecessary true states. (If the initially selected T is not
large enough, the training procedure will not converge to zero error on the training
set, and the procedure can be restarted with a larger value of T.)

At the start of training, each Gaussian center I Ci, is initialized to a random location
in the hidden state space. The standard deviations of each Gaussian, lTi, are initially
set to a large value. The priors, qi, are set to liT. The weights are set to initial
values chosen from the uniform distribution in [-.25,.25]. All connection weights
feeding into the hidden layer are second order.

The network weights and mixture model parameters-C, iT, and q-are adjusted by
gradient descent in a cost measure, C. This cost includes two components: (a) the
performance error, £, which is a squared difference between the actual and target
network output following presentation of a training string, and (b) a complexity

24 Das and Mozer

c: 800,------~....,
o II language
0600

i 400

E
'0

2

400

200

NO ROLO OF DG

language

2000,--------,

language language S

200

100

NO ROLO OF DG o NO RO LO OF DG

language 6

OL.......l.:.O=~

NO ROLO OF 00

Figure 4: Each graph depicts generalization performance on one of the Tomita languages
for 5 alternative neural net approaches: no clustering [Ne), rigid quantization [RQ), learn
then quantize [LQ], DOLCE in unsupervised mode using Forgy's algorithm [DF], DOLCE

in supervised mode using mixture model [DG) . The vertical axis shows the number of
misclassification of 3000 test strings. Each bar is the average result across 10 replications
with different initial weights.

cost, which is the entropy of the prior distribution, q:

where ..\ is a regularization parameter. The complexity cost is minimal when only
one Gaussian has a nonzero prior, and maximal when all priors are equal. Hence,
the cost encourages unnecessary Gaussians to drop out of the mixture model.

The particular gradient descent procedure used is a generalization of back propa­
gation through time (Rumelhart, Hinton, & Williams, 1986) that incorporates the
mixture model. To better condition the search space and to avoid a constrained
search, optimization is performed not over iT and q directly but rather over hyper­
parameters a and h, where u; = exp(ai)/,B and qi = exp(-bl)/E j exp(-bj).
The global parameter ,B scales the overall spread of the Gaussians, which corre­
sponds to the level of noise in the model. As performance on the training set
improves, we assume that the network weights are coming to better approximate
the target weights, hence that the level of noise is decreasing. Thus, we tie ,B to
the performance error e. We have used various annealing schedules and DOLCE

appears robust to this variation; we currently use {3 ex 1/ e. Note that as £ --+ 0,
{3 --+ 00 and the probability density under one Gaussian at h will become infinitely
greater than the density under any other; consequently, the soft MAP estimator,
h, becomes equivalent to the MAP estimator h, and the transformed hidden state
becomes discrete. A schematic depiction of the probability landscape both before
and after training is depicted in Figure 3.

A Unified Gradient-Descent/Clustering Architecture for Finite State Machine Induction 25

5 SIMULATION STUDIES

The network was trained on a set ofregular languages first studied by Tomita (1982).
The languages, which utilize only the symbols 0 and 1, are: (1) 1·; (2) (10)·; (3) no
odd number of consecutive 1 's is directly followed by an odd number of consecutive
O's; (4) any string not containing the substring "000"; (5) , [(01110)(01110)].; (6)
the difference between the number of ones and number of zeros in the string is a
multiple of three; and (7) 0·1· 0·1· .

A fixed training corpus of strings was generated for each language, with an equal
number of positive and negative examples. The maximum string length varied from
5 to 10 symbols and the total number of examples varied from 50 to 150, depending
on the difficulty of the induction task.

Each string was presented one symbol at a time, after which DOLCE was given a
target output that specified whether the string was a positive or negative example
of the language. Training continued until DOLCE converged on a set of weights
and mixture model parameters. Because we assume that the training examples are
correctly classified, the error £ on the training set should go to zero when DOLCE has
learned. If this did not happen on a given training run, we restarted the simulation
with different initial random weights.

For each language, ten replications of DOLCE (with the supervised mixture model)
were trained, each with different random initial weights. The learning rate and
regularization parameter .\ were chosen for each language by quick experimentation
with the aim of maximizing the likelihood of convergence on the training set. We
also trained a version of DOLCE that clustered using the unsupervised Forgy algo­
rithm, as well as several alternative neural net approaches: a generic recurrent net,
as shown on the left side of Figure 1, which used no clustering [NC]; a version with
rigid quantization during training [RQ], comparable to the earlier work of Zeng,
Goodman, and Smyth (1993); and a version in which the unsupervised Forgyalgo­
rithm was used to quantize the hidden state following training [LQ], comparable to
the earlier work of Das and Das (1991). In these alternative approaches, we used
the same architecture as DOLCE except for the clustering procedure. We selected
learning parameters to optimize performance on the training set, ran ten replica­
tions for each language, replaced runs which did not converge, and used the same
training sets.

6 RESULTS AND CONCLUSION

In Figure 4, we compare the generalization performance of DOLCE-both the unsu­
pervised Forgy [DF] and supervised mixture model [DG]-to the NC, RQ, and LQ
approaches. Generalization performance was tested using 3000 strings not in the
training set, half positive examples and half negative. The two versions of DOLCE
outperformed the alternative neural net approaches, and the DG version of DOLCE
consistently outperformed the DF version.

To summarize, we have described an approach that incorporates inductive bias into
a learning algorithm in order to encourage the evolution of discrete representations
during training. This approach is a quite general and can be applied to domains

26 Das and Mozer

other than grammaticality judgement where discrete representations might be de­
sirable. Also, this approach is not specific to recurrent networks and may be applied
to feedforward networks. We are now in the process of applying DOLCE to a much
larger, real-world problem that involves predicting the next symbol in a string. The
data base comes from a case study in software engineering, where each symbol
represents an operation in the software development process. This data is quite
noisy and it is unlikely that the data can be parsimoniously described by an FSM.
Nonetheless, our initial results are encouraging: DOLCE produces predictions at
least three times more accurate than a standard recurrent net without clustering.

Acknowledgements

This research was supported by NSF Presidential Young Investigator award IRI-
9058450 and grant 90-21 from the James S. McDonnell Foundation.

References

S. Das & R. Das. (1991) Induction of discrete state-machine by stabilizing a continuous re­
current network using clustering. Computer Science and Informatics 21(2):35-40. Special
Issue on Neural Computing.

J.L. Elman. (1990) Finding structure in time. Cognitive Science 14:179-212.

E. Forgy. (1965) Cluster analysis of multivariate data: efficiency versus interpretability of
classifications. Biometrics 21:768-780.

M.C. Mozer & J.D Bachrach. (1990) Discovering the structure of a reactive environment
by exploration. Neural Computation 2(4):447-457.

C. McMillan, M.C. Mozer, & P. Smolensky. (1992) Rule induction through integrated
symbolic and subsymbolic processing. In J.E. Moody, S.J. Hanson, & R.P. Lippmann
(eds.), Advances in Neural Information Proceuing Sy6tems 4, 969-976. San Mateo, CA:
Morgan Kaufmann.

C.L. Giles, D. Chen, C.B. Miller, H.H. Chen, G.Z. Sun, & Y.C. Lee. (1992) Learning
and extracting finite state automata with second-order recurrent neural network. Neural
Computation 4(3):393-405.

H. Schiitze. (1993) Word space. In S.J. Hanson, J.D. Cowan, & C.L. Giles (eds.), Advances
in Neural Information Proceuing Systems 5, 895-902. San Mateo, CA: Morgan Kaufmann.

M. Tomita. (1982) Dynamic construction of finite-state automata from examples using hill­
climbing. Proceedings of the Fourth Annual Conference of the Cognitive Science Society,
105-108.

G. Towell & J. Shavlik. (1992) Interpretion of artificial neural networks: mapping
knowledge-based neural networks into rules. In J .E. Moody, S.J. Hanson, & R.P. Lipp­
mann (eds.), Advances in Neural Information Proceuing Systems 4, 977-984. San Mateo,
CA: Morgan Kaufmann.

R.L. Watrous & G.M. Kuhn. (1992) Induction of finite state languages using second-order
recurrent networks. In J.E. Moody, S.J. Hanson, & R.P. Lippmann (eds.), Advances in
Neural Information Proceuing Systems 4, 969-976. San Mateo, CA: Morgan Kaufmann.

Z. Zeng, R. Goodman, & P. Smyth. (1993) Learning finite state machines with self­
clustering recurrent networks. Neural Computation 5(6):976-990.

