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Abstract 

We present a new algorithm for eliminating excess parameters and 
improving network generalization after supervised training. The 
method, "Principal Components Pruning (PCP)", is based on prin­
cipal component analysis of the node activations of successive layers 
of the network. It is simple, cheap to implement, and effective. It 
requires no network retraining, and does not involve calculating 
the full Hessian of the cost function. Only the weight and the node 
activity correlation matrices for each layer of nodes are required. 
We demonstrate the efficacy of the method on a regression problem 
using polynomial basis functions, and on an economic time series 
prediction problem using a two-layer, feedforward network. 

1 Introduction 

In supervised learning, a network is presented with a set of training exemplars 
[u(k), y(k)), k = 1 ... N where u(k) is the kth input and y(k) is the correspond­
ing output. The assumption is that there exists an underlying (possibly noisy) 
functional relationship relating the outputs to the inputs 

y=/(u,e) 

where e denotes the noise. The aim of the learning process is to approximate this 
relationship based on the the training set. The success of the learned approximation 
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is judged by the ability of the network to approximate the outputs corresponding 
to inputs it was not trained on. 

Large networks have more functional flexibility than small networks, so are better 
able to fit the training data. However large networks can have higher parameter 
variance than small networks, resulting in poor generalization. The number of 
parameters in a network is a crucial factor in it's ability to generalize. 

No practical method exists for determining, a priori, the proper network size and 
connectivity. A promising approach is to start with a large, fully-connected network 
and through pruning or regularization, increase model bias in order to reduce model 
variance and improve generalization. 

Review of existing algorithms 

In recent years, several methods have been proposed. Skeletonization (Mozer and 
Smolensky, 1989) removes the neurons that have the least effect on the output 
error. This is costly and does not take into account correlations between the neuron 
activities. Eliminating small weights does not properly account for a weight's effect 
on the output error. Optimal Brain Damage (OBD) (Le Cun et al., 1990) removes 
those weights that least affect the training error based on a diagonal approximation 
of the Hessian. The diagonal assumption is inaccurate and can lead to the removal 
of the wrong weights. The method also requires retraining the pruned network, 
which is computationally expensive. Optimal Brain Surgeon (OBS) (Hassibi et al., 
1992) removes the "diagonal" assumption but is impractical for large nets. Early 
stopping monitors the error on a validation set and halts learning when this error 
starts to increase. There is no guarantee that the learning curve passes through the 
optimal point, and the final weight is sensitive to the learning dynamics. Weight 
decay (ridge regression) adds a term to the objective function that penalizes large 
weights. The proper coefficient for this term is not known a priori, so one must 
perform several optimizations with different values, a cumbersome process. 

We propose a new method for eliminating excess parameters and improving network 
generalization. The method, "Principal Components Pruning (PCP)", is based on 
principal component analysis (PCA) and is simple, cheap and effective. 

2 Background and Motivation 

PCA (Jolliffe, 1986) is a basic tool to reduce dimension by eliminating redundant 
variables. In this procedure one transforms variables to a basis in which the covari­
ance is diagonal and then projects out the low variance directions. 

While application of PCA to remove input variables is useful in some cases (Leen 
et al., 1990), there is no guarantee that low variance variables have little effect on 
error. We propose a saliency measure, based on PCA, that identifies those variables 
that have the least effect on error. Our proposed Principal Components Pruning 
algorithm applies this measure to obtain a simple and cheap pruning technique in 
the context of supervised learning. 
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Special Case: PCP in Linear Regression 

In unbiased linear models, one can bound the bias introduced from pruning the 
principal degrees of freedom in the model. We assume that the observed system 
is described by a signal-plus-noise model with the signal generated by a function 
linear in the weights: 

y = Wou + e 
where u E ~P, Y E ~m, W E ~mxp, and e is a zero mean additive noise. The 
regression model is 

Y=Wu. 
The input correlation matrix is ~ = ~ L:k u(k)uT(k). 

It is convenient to define coordinates in which ~ is diagonal A = CT ~ C where C is 
the matrix whose columns are the orthonormal eigenvectors of~. The transformed 
input variables and weights are u = CT u and W = W C respectively, and the 
model output can be rewritten as Y = W u . 
It is straightforward to bound the increase in training set error resulting from re­
moving subsets of the transformed input variable. The sum squared error is 

I = ~ L[y(k) - y(k)f[y(k) - y(k)] 
k 

Let Yl(k) denote the model's output when the last p -l components of u(k) are set 
to zero. By the triangle inequality 

h ~ L[y(k) - Yl(k)f[y(k) - Yl(k)] 
k 

< 1+ ~ L[Y(k) - Yl(k)f[Y(k) - Yl(k)] (1) 
k 

The second term in (1) bounds the increase in the training set errorl. This term 
can be rewritten as 

p 

~ L[y(k) - Yl(k)f[Y(k) - lh(k)] L w; WiAi 
k i=l+l 

where Wi denotes the ith column of Wand Ai is the ith eigenvalue. The quantity 
w; Wi Ai measures the effect of the ith eigen-coordinate on the output error; it serves 
as our saliency measure for the weight Wi. 

Relying on Akaike's Final Prediction error (FPE) (Akaike, 1970), the average test 
set error for the original model is given by 

J[W] = ~ + pm I(W) 
-pm 

where pm is the number of parameters in the model. If p -l principal components 
are removed, then the expected test set is given by 

Jl[W] = N + lm Il(W) . 
N-lm 

1 For y E Rl, the inequality is replaced by an equality. 
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If we assume that N» l * m, the last equation implies that the optimal generaliza­
tion will be achieved if all principal components for which 

-T _ 2m! 
Wi WiAi < N 

are removed. For these eigen-coordinates the reduction in model variance will more 
then compensate for the increase in training error, leaving a lower expected test set 
error. 

3 Proposed algorithm 

The pruning algorithm for linear regression described in the previous section can be 
extended to multilayer neural networks. A complete analysis of the effects on gen­
eralization performance of removing eigen-nodes in a nonlinear network is beyond 
the scope of this short paper. However, it can be shown that removing eigen-nodes 
with low saliency reduces the effective number of parameters (Moody, 1992) and 
should usually improve generalization. Also, as will be discussed in the next section, 
our PCP algorithm is related to the OBD and OBS pruning methods. As with all 
pruning techniques and analyses of generalization, one must assume that the data 
are drawn from a stationary distribution, so that the training set fairly represents 
the distribution of data one can expect in the future. 

Consider now a feedforward neural network, where each layer is of the form 

yi = r[WiUi ] = r[Xi] . 

Here, u i is the input, Xi is the weighted sum of the input, r is a diagonal operator 
consisting of the activation function of the neurons at the layer, and yi is the output 
of the layer. 

1. A network is trained using a supervised (e.g. backpropagation) training 
procedure. 

2. Starting at the first layer, the correlation matrix :E for the input vector to 
the layer is calculated. 

3. Principal components are ranked by their effect on the linear output of the 
layer. 2 

4. The effect of removing an eigennode is evaluated using a validation set. 
Those that do not increase the validation error are deleted. 

5. The weights of the layer are projected onto the l dimensional subspace 
spanned by the significant eigenvectors 

W -+ WClCr 

where the columns of C are the eigenvectors of the correlation matrix. 

6. The procedure continues until all layers are pruned. 

2If we assume that -r is the sigmoidal operator, relying on its contraction property, 
we have that the resulting output error is bounded by Ilell <= IIWlllle",lll where e",l IS 

error observed at Xi and IIWII is the norm of the matrices connecting it to the output. 



Fast Pruning Using Principal Components 39 

As seen, the algorithm proposed is easy and fast to implement. The matrix dimen­
sions are determined by the number of neurons in a layer and hence are manageable 
even for very large networks. No retraining is required after pruning and the speed 
of running the network after pruning is not affected. 

Note: A finer scale approach to pruning should be used ifthere is a large variation 
between Wij for different j. In this case, rather than examine w[ WiAi in one piece, 
the contribution of each wtj Ai could be examined individually and those weights 
for which the contribution is small can be deleted. 

4 Relation to Hessian-Based Methods 

The effect of our PCP method is to reduce the rank of each layer of weights in a 
network by the removal of the least salient eigen-nodes, which reduces the effective 
number of parameters (Moody, 1992). This is in contrast to the OBD and OBS 
methods which reduce the rank by eliminating actual weights. PCP differs further 
from OBD and OBS in that it does not require that the network be trained to a 
local minimum of the error. 

In spite of these basic differences, the PCP method can be viewed as intermedi­
ate between OBD and OBS in terms of how it approximates the Hessian of the 
error function. OBD uses a diagonal approximation, while OBS uses a linearized 
approximation of the full Hessian. In contrast, PCP effectively prunes based upon 
a block-diagonal approximation of the Hessian. A brief discussion follows. 

In the special case of linear regression, the correlation matrix ~ is the full Hessian 
of the squared error.3 For a multilayer network with Q layers, let us denote the 
numbers of units per layer as {Pq : q = 0 . . . Q}.4 The number of weights (including 
biases) in each layer is bq = Pq(Pq-l + 1), and the total number of weights in the 
network is B = L:~=l bq . The Hessian of the error function is a B x B matrix, 
while the input correlation matrix for each of the units in layer q is a much simpler 
(Pq-l + 1) X (Pq-l + 1) matrix. Each layer has associated with it Pq identical 
correlation matrices. 

The combined set of these correlation matrices for all units in layers q = 1 .. . Q of 
the network serves as a linear, block-diagonal approximation to the full Hessian of 
the nonlinear network.5 This block-diagonal approximation has E~=l Pq(Pq-l + 1)2 
non-zero elements, compared to the [E~=l Pq(Pq-l + 1)]2 elements of the full Hessian 

(used by OBS) and the L:~=l Pq(Pq-l + 1) diagonal elements (used by OBD). Due 
to its greater richness in approximating the Hessian, we expect that PCP is likely 
to yield better generalization performance than OBD. 

3The correlation matrix and Hessian may differ by a numerical factor depending on the 
normalization of the squared error. If the error function is defined as one half the average 
squared error (ASE), then the equality holds. 

4The inputs to the network constitute layer O. 
5The derivation of this approximation will be presented elsewhere. However, the cor­

respondence can be understood in analogy with the special case of linear regression. 
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Figure 1: a) Underlying function (solid), training data (points), and 10th order polynomial 
fit (dashed). b) Underlying function, training data, and pruned regression fit (dotted). 

The computational complexities of the OBS, OBD, and PCP methods are 

respectively, where we assume that N 2: B. The computational cost of PCP is 
therefore significantly less than that of OBS and is similar to that of OBD. 

5 Simulation Results 

Regression With Polynomial Basis Functions 

The analysis in section 2 is directly applicable to regression using a linear combina­
tion of basis functions y = W f (11,) • One simply replaces 11, with the vector of basis 
functions f(11,). 

We exercised our pruning technique on a univariate regression problem using mono­
mial basis functions f(11,) = (1,u,u 2 , ... ,un f with n = 10. The underlying func­
tion was a sum of four sigmoids. Training and test data were generated by evaluating 
the underlying function at 20 uniformly spaced points in the range -1 ~ u ~ + 1 and 
adding gaussian noise. The underlying function, training data and the polynomial 
fit are shown in figure 1a. 

The mean squared error on the training set was 0.00648. The test set mean squared 
error, averaged over 9 test sets, was 0.0183 for the unpruned model. We removed 
the eigenfunctions with the smallest saliencies w2 >.. The lowest average test set 
error of 0.0126 was reached when the trailing four eigenfunctions were removed.6 . 

Figure 1 b shows the pruned regression fit. 

6The FPE criterion suggested pruning the trailing three eigenfunctions. We note that 
our example does not satisfy the assumption of an unbiased model, nor are the sample 
sizes large enough for the FPE to be completely reliable. 
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Figure 2: Prediction of the 
IP index 1980 - 1990. The 
solid line shows the perfor­
mance before pruning and 
the dotted line the perfor­
mance after the application 
of the PCP algorithm. The 
results shown represent av­
erages over 11 runs with 
the error bars representing 
the standard deviation of 
the spread. 

We have applied the proposed algorithm to the task of predicting the Index of In­
dustrial Production (IP), which is one of the main gauges of U.S. economic activity. 
We predict the rate of change in IP over a set of future horizons based on lagged 
monthly observations of various macroeconomic and financial indicators (altogether 
45 inputs). 7 

Our standard benchmark is the rate of change in IP for January 1980 to January 
1990 for models trained on January 1960 to December 1979. In all runs, we used two 
layer networks with 10 tanh hidden nodes and 6 linear output nodes corresponding 
to the various prediction horizons (1, 2, 3, 6, 9, and 12 months). The networks were 
trained using stochastic backprop (which with this very noisy data set outperformed 
more sophisticated gradient descent techniques). The test set results with and 
without the PCP algorithm are shown in Figure 2. 

Due to the significant noise and nonstationarity in the data, we found it beneficial 
to employ both weight decay and early stopping during training. In the above runs, 
the PCP algorithm was applied on top of these other regularization methods. 

6 Conclusions and Extensions 

Our "Principal Components Pruning (PCP)" algorithm is an efficient tool for re­
ducing the effective number of parameters of a network. It is likely to be useful when 
there are correlations of signal activities. The method is substantially cheaper to 
implement than OBS and is likely to yield better network performance than OBD.8 

7Preliminary results on this problem have been described briefly in (Moody et al., 
1993), and a detailed account of this work will be presented elsewhere. 

8See section 4 for a discussion of the block-diagonal Hessian interpretation of our 
method. A systematic empirical comparison of computational cost and resulting net­
work performance of PCP to other methods like OBD and OBS would be a worthwhile 
undertaking. 
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Furthermore, PCP can be used on top of any other regularization method, including 
early stopping or weight decay.9 Unlike OBD and OBS, PCP does not require that 
the network be trained to a local minimum. 

We are currently exploring nonlinear extensions of our linearized approach. These 
involve computing a block-diagonal Hessian in which the block corresponding to 
each unit differs from the correlation matrix for that layer by a nonlinear factor. The 
analysis makes use of GPE (Moody, 1992) rather than FPE. 
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