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The problem of learning from examples in multilayer networks is 
studied within the framework of statistical mechanics. Using the 
replica formalism we calculate the average generalization error of a 
fully connected committee machine in the limit of a large number 
of hidden units. If the number of training examples is proportional 
to the number of inputs in the network, the generalization error 
as a function of the training set size approaches a finite value. If 
the number of training examples is proportional to the number of 
weights in the network we find first-order phase transitions with a 
discontinuous drop in the generalization error for both binary and 
continuous weights. 

1 INTRODUCTION 

Feedforward neural networks are widely used as nonlinear, parametric models for the 
solution of classification tasks and function approximation. Trained from examples 
of a given task, they are able to generalize, i.e. to compute the correct output for 
new, unknown inputs. Since the seminal work of Gardner (Gardner, 1988) much 
effort has been made to study the properties of feedforward networks within the 
framework of statistical mechanics; for reviews see e.g. (Hertz et al., 1989; Watkin et 
al., 1993). Most of this work has concentrated on the simplest feedforward network, 
the simple perceptron with only one layer of weights connecting the inputs with a 
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single output. However, most applications have to utilize architectures with hidden 
layers, for which only a few general theoretical results are known, e.g. (Levin et al., 
1989; Krogh and Hertz, 1992; Seung et al., 1992). 

As an example of a two-layer network we study the committee machine (Nilsson, 
1965). This architecture has only one layer of adjustable weights, while the hidden­
to-output weights are fixed to + 1 so as to implement a majority decision of the 
hidden units. For binary weights this may already be regarded as the most general 
two-layer architecture, because any other combination of hidden-output weights can 
be gauged to + 1 by flipping the signs of the corresponding input-hidden weights. 
Previous work has been concerned with some restricted versions of this model, such 
as learning geometrical tasks in machines with local input-to-hidden connectivity 
(Sompolinsky and Tishby, 1990) and learning in committee machines with nonover­
lapping receptive fields (Schwarze and Hertz, 1992; Mato and Parga, 1992). In 
this tree-like architecture there are no correlations between hidden units and its 
behavior was found to be qualitatively similar to the simple perceptron. 

Recently, learning in fully connected committee machines has been studied within 
the annealed approximation (Schwarze and Hertz, 1993a,b; Kang et aI, 1993), re­
vealing properties which are qualitatively different from the tree model. However, 
the annealed approximation (AA) is only valid at high temperatures, and a correct 
description of learning at low temperatures requires the solution of the quenched 
theory. The purpose of this paper is to extend previous work towards a better 
understanding of the learning properties of multilayer networks. We present results 
for the average generalization error of a fully connected committee machine within 
the replica formalism and compare them to results obtained within the AA. In par­
ticular we consider a large-net limit in which both the number of inputs Nand 
the number of hidden units K go to infinity but with K ~ N. The target rule is 
defined by another fully connected committee machine and is therefore realizable 
by the learning network. 

2 THE MODEL 

We consider a network with N inputs, K hidden units and a single output unit (j. 
Each hidden unit (jl, I E {I, ... , K}, is connected to the inputs 8 = (81 , .•• , 8N) 
through the weight vector W, and performs the mapping 

(j1(WI , 8) = sign (Jw W, . 8). (1) 

The hidden units may be regarded as outputs of simple perceptrons and will be 
referred to as students. The factor N- 1/ 2 in (1) is included for convenience; it 
ensures that in the limit N -+ 00 and for iid inputs the argument of the sign 
function is of order 1. The overall network output is defined as the majority vote 
of the student committee, given by 

(2) 
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This network is trained from P = aK N input-output examples ({", T({")), J.I. E 
{1, ... , P}, ofthe desired mapping T, where the components {r ofthe training inputs 
are independently drawn from a distribution with zero mean and unit variance. We 
study a realizable task defined by another committee machine with weight vectors 
L (the teachers), hidden units Tz and an overall output T(S) of the form (2). We 
will discuss both the binary version of this model with W" L E {± l}N and the 
continuous version in which the W,'s and L's are normalized to VN. 
The goal of learning is to find a network that performs well on unknown examples, 
which are not included in the training set. The network quality can be measured 
by the generalization error 

€({W,}) = (0[-(T({~},S) T(S)])~, (3) 
the probability that a randomly chosen input is misclassified. 

Following the statistical mechanics approach we consider a stochastic learning al­
gorithm that for long training times yields a Gibbs distribution of networks with 
the corresponding partition function 

Z = J dpo({W, }) e- f1Et ({W,}) , (4) 

where 
(5) 

" is the training error, {3 = liT is a formal temperature parameter, and po( {W,}) 
includes a priori constraints on the weights. The average generalization and train­
ing errors at thermal equilibrium, averaged over all representations of the training 
examples, are given by 

(( (€({W,}))T)) 
1 
P (( (Et({~}))T )), (6) 

where (( ... )) denotes a quenched average over the training examples and ( ... )T a 
thermal average. These quantities may be obtained from the average free energy 
F = - T (( In Z )), which can be calculated within the standard replica formalism 
(Gardner, 1988; Gyorgyi and Tishby, 1990). 

Following this approach, we introduce order parameters and make symmetry as­
sumptions for their values at the saddle point of the free energy; for details of the 
calculation see (Schwarze, 1993). We assume replica symmetry (RS) and a par­
tial committee symmetry allowing for a specialization of the hidden units on their 
respective teachers. Furthermore, a self-consistent solution of the saddle-point 
equations requires scaling assumptions for the order parameters. Hence, we are left 
with the ansatz 

1 
R'k = N (( ( ~)T . V k )) 

1 
D,k = N(((W,)T,(((Wk)T)) 

1 
C'k= N(((W"Wk)T)) (7) 
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where p, ~, d, q and c are of order 1. For ~ = q = 0 this solution is symmetric 
under permutations of hidden units in the student network, while nonvanishing ~ 
and q indicate a specialization of hidden units that breaks this symmetry. The 
values of the order parameters at the saddle point of the replica free energy finally 
allow the calculation of the average generalization and training errors. 

3 THEORETICAL RESULTS 

In the limit of small training set sizes, Q '" 0(1/ K), we find a committee-symmetric 
solution where each student weight vector has the same overlap to all the teacher 
vectors, corresponding to ~ = q = O. For both binary and continuous weights 
the generalization error of this solution approaches a nonvanishing residual value as 
shown in figure 1. Note that the asymptotic generalization ability of the committee­
symmetric solution improves with increasing noise level. 
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Figure 1: a) Generalization (upper curve) and training (lower curve) error as func­
tions of 0 = K Q. The results of Monte Carlo simulations for the generalization 
(open symbols) and training (closed symbols) errors are shown for K = 5 (circles) 
and K = 15 (triangles) with T = 0.5 and N = 99. The vertical lines indicate the 
predictions of the large-K theory for the location of the phase transition Oc = K Q c 
in the binary model for K = 5 and K = 15, respectively. 
b) Temperature dependence of the asymptotic generalization and training errors for 
the committee-symmetric solution. 

Only if the number of training examples is sufficiently large, Q '" 0(1), can the 
committee symmetry be broken in favor of a specialization of hidden units. We find 
first-order phase transitions to solutions with ~,q > 0 in both the continuous and 
the binary model. While in the binary model the transition is accompanied by a 
perfect alignment of the hidden-unit weight vectors with their respective teachers 
(~ = 1), this is not possible in a continuous model. Instead, we find a close approach 
of each student vector to one of the teachers in the continuous model: At a critical 
value Q" (T) of the load parameter a second minimum of the free energy appears, 
corresponding to the specialized solution with ~, q > O. This solution becomes the 
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global minimum at Ckc(T) > Ck.(T), and its generalization error decays algebraically. 
In both models the symmetric, poorly generalizing state remains metastable for 
arbitrarily large Ck. For increasing system sizes it will take exponentially long times 
for a stochastic training algorithm to escape from this local minimum (see figure 
1a). Figure 2 shows the qualitative behavior of the generalization error for the 
continuous model, and the phase diagrams in figure 3 show the location of the 
transitions for both models. 
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Figure 2: Schematic behavior of the generalization error in the large-K committee 
machine with continuous weights. 

In the binary model a region of negative thermodynamic entropy (below the dashed 
line in figure 3a) suggests that replica symmetry has to be broken to correctly 
describe the metastable, symmetric solution at large Ck. 

A comparison of the RS solution with the results previously obtained within the 
AA (Schwarze and Hertz, 1993a,b) shows that the AA gives a qualitatively correct 
description of the main features of the learning curve. However, it fails to predict the 
temperature dependence of the residual generalization error (figure 1 b) and gives an 
incorrect description of the approach to this value. Furthermore, the quantitative 
predictions for the locations of the phase transitions differ considerably (figure 3). 

4 SIMULATIONS 

We have performed Monte Carlo simulations to check our analytical findings for the 
binary model (see figure 1a). The influence of the metastable, poorly generalizing 
state is reflected by the fact that at low temperatures the simulations do not follow 
the predicted phase transition but get trapped in the metastable state. Only at 
higher temperatures do the simulations follow the first order transition (Schwarze, 
1993). Furthermore, the deviation of the training error from the theoretical result 
indicates the existence of replica symmetry breaking for finite Q. However, the gen­
eralization error of the symmetric state is in good quantitative agreement with the 
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Figure 3: Phase diagrams of the large-K committee machine. 
a) continuous weights: The two left lines show the RS results for the spinodal 
line (--), where the specialized solution appears, and the location of the phase 
transition (-). These results are compared to the predictions of the AA for the 
spinodal line (- . -) and the phase transition ( ... ). 
b) binary weights: The RS result for the location of the phase transition (-) and 
its zero-entropy line (--) are compared to the prediction of the AA for the phase 
transition ( ... ) and its zero-entropy line (- . -). 

theoretical results. 
In order to investigate whether our analytical results for a Gibbs ensemble of com­
mittee machines carries over to other learning scenarios we have studied a variation 
of this model allowing the use of backpropagation. We have considered a 'soft­
committee' whose output is given by 

q( {W,}. S) = tanh (t. tanh (J£, . S». (8) 

The first-layer weights W, of this network were trained on examples (el', r(el'», 
J.£ E {l, ... , P}, defined by another soft-committee with weight vectors V, using 
on-line backpropagation with the error function 

£(S) = (1/2)[0'({~}, S) - r(S)]2. (9) 
In general this procedure is not guaranteed to yield a Gibbs distribution of weights 
(Hansen et al., 1993) and therefore the above analysis does not apply to this case. 
However, the generalization error for a network with N = 45 inputs and K = 
3 hidden units, averaged over 50 independent runs, shows the same qualitative 
behavior as predicted for the Gibbs ensemble of committee machines (see figure 4). 
After an initial approach to a nonvanishing value, the average generalization error 
decreases rather smoothly to zero. This smooth decrease of the average error is 
due to the fact that some runs got trapped in a poorly-generalizing, committee­
symmetric solution while others found a specialized solution with a close approach 
to the teacher. 
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Figure 4: Generalization error and training error of the 'soft-committee' with N = 
45 and K = 3. We have used standard on-line backpropagation for the first-layer 
weights with a learning rate 11 = 0.01 for 1000 epochs. the results are averaged over 
50 runs with different teacher networks and different training sets. 

5 CONCLUSION 

We have presented the results of a calculation of the generalization error of a multi­
layer network within the statistical mechanics approach. We have found nontrivial 
behavior for networks with both continuous and binary weights. In both mod­
els, phase transitions from a symmetric, poorly-generalizing solution to one with 
specialized hidden units occur, accompanied by a discontinuous drop of the gener­
alization error. However, the existence of a metastable, poorly generalizing solution 
beyond the phase transition implies the possibility of getting trapped in a local 
minimum during the training process. Although these results were obtained for a 
Gibbs distribution of networks, numerical experiments indicate that some of the 
general results carryover to other learning scenarios. 
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