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ABSTRACT

We study feed-forward nets with arbitrarily many layers, using the stan-
dard sigmoid, tanh x. Aside from technicalities, our theorems are:
1. Complete knowledge of the output of a neural net for arbitrary inputs
uniquely specifies the architecture, weights and thresholds; and 2. There
are only finitely many critical points on the error surface for a generic
training problem.

Neural nets were originally introduced as highly simplified models of the nervous
system. Today they are widely used in technology and studied theoretically by
scientists from several disciplines. However, they remain little understood.

Mathematically, a (feed-forward) neural net consists of:
(1) A finite sequence of positive integers (Do, Dy,...,Dr);

(2) A family of real numbers (w?,) defined for 1<€< L, 1<j< Dy, 1<k<Diy;
and

(3) A family of real numbers (65) defined for 1<£< L, 1<j < Dy.

The sequence (Dg, Dy, ..., D) is called the architecture of the neural net, while the
wy are called weights and the 65 thresholds.

Neural nets are used to compute non-linear maps from R~ to R by the following
construction. We begin by fixing a nonlinear function o(z) of one variable. Analogy
with the nervous system suggests that we take o(z) asymptotic to constants as z
tends to +oc; a standard choice, which we adopt throughout this paper, is o(z) =
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tanh (%.c) Given an “input” ({1,...,tp,) € RP° we define real numbers :cf for
0<€<L,1<j< D; by the following induction on £.

(4) If £=0 then z{ =t;.

(5) If the 25" are known with £ fixed (1< £< L), then we set

.r}:a( Z wkai'1+9f) for 1<j<Ds.
1<kgDyy

Here z{,...,z%, are interpreted as the outputs of D; “neurons” in the £** “layer”
of the net. The output map of the net is defined as the map

(6) ®:(t1,...,tp,) — (xf‘,.‘.,:cfu).

In practical applications, one tries to pick the neural net [(Do, D1, ..., Dr), (w;),

(9} )] so that the output map ® approximates a given map about which we have
only imperfect information. The main result of this paper is that under generic
conditions, perfect knowledge of the output map ® uniquely specifies the architec-
ture, the weights and the thresholds of a neural net, up to obvious symmetries.
More precisely, the obvious symmetries are as follows. Let (vo,71,...,7r) be per-
mutations, with v¢: {1,..., D¢} — {1,..., D;}; and let {Ef: 0<€< L, 1<j< Dy} be
a collection of £1’s. Assume that v, = (identity) and ef = +1 whenever £ = 0 or
£ = L. Then one checks easily that the neural nets

(7} [ Do Diyseos D) fwf-k), (%)) and

(8) [(Do,Dy,...,Dr), @), (69))

have the same output map if we set
~L .t ¢ 2-1 At _ .t
() @ik = €jWppejipre-anif and 05 = Ejfy)-

This reflects the facts that the neurons in layer £ are interchangeable (1< £< L—1),
and that the function o(z) is odd. The nets (7) and (8) will be called isomorphic
if they are related by (9). Note in particular that isomorphic neural nets have the
same architecture. Our main theorem asserts that, under generic conditions, any
two neural nets with the same output map are isomorphic.

We discuss the generic conditions which we impose on neural nets. 1Ve have to
avoid obvious counterexamples such as:

(10) Suppose all the weights wy, are zero. Then the output map & is constant.
The architecture and thresholds of the neural net are clearly not uniquely
determined by .

(11) Fix &g, j1, jo» with 1<l <L — 1 and 1<j; < j2<Dg,. Suppose we have

67 = 652 and w(°, = w2, for all k. Then (5) gives z/° = /2. Therefore, the
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output depends on wj;j.l and wj?:-

the output map does not uniquely determine thie weights.

! only through the sum w*!

Lo+1
i1 =+ w . So

Jiz

Our hypotheses are more than adequate to exclude these counterexamples. Specif-
ically, we assume that

(12) 6% # 0 and |6%] # [64] for j # j'.

(13) wfi #0; and for j # j', the ratio wf-k/uf,k is not equal to any fraction of the
form p/q with p, ¢ integers and 1< ¢< 100 Dj.

Evidently, these conditions hold for generic neural nets. The precise statement of

our main theorem is as follows. If two neural nets satisfy (12), (13) and have the

same output, then the nels are isomorphic. It would be interesting to replace (12),

(13) by minimal hypotheses. and to study functions o(z) other than tanh (%-:l‘)

We now sketch the proof of our main result. sacrificing accuracy for simplicity.
After a trivial reduction. we may assume Do = Dy = 1. Thus, the outputs of the

nodes a:;(a‘.) are functions of one variable, and the output map of the neural net is
t — z{(t). The key idea is to continue the z{(t) analytically to complex values of ¢,
and to read off the structure of the net from the set of singularities of the :i:_f. Note

that o(z) = tanh (%J.) is meromorphic, with poles at the points of an arithmetic
progression {(2m + 1)wi:m € Z}. This leads to two crucial observations.

(14) When £ = 1, the poles of z{(t) form an arithmetic progression II}. and

(15) When ¢ > 1, every pole of any Ii_l(t) 15 an accumulation point of poles of
any z5(t).

In fact, (14) is immediate from the formula z}(t) = o(w},t + 6}), which is merely
the special case Dy = 1 of (3). e obtain

(16) n;={(m+ . J:mGZ}

To see (15), fix ¢, j, ®, and assume for simplicity that .r;'é"l(t) has a simple pole at
to, while z{~!(t) (k # %) is analytic in a neighborhood of ¢y. Then

A
(17) zg‘l(t) = ; + f(t), with f analytic in a neighborhood of t,.
— ‘0

t
From (17) and (5), we obtain

(18) zj(t) = o(wjgA(t —to)™" + g(t)), with

(19) g(t) = wief(t)+ Y whzt™(t) + 6! analytic in a neighborhood of to.
k#%

Thus, in a neighborhood of tg, the poles of :nf(ﬂ are the solutions i,, of the equation

wé A

i % - . ~

(20) - +9(tm) = (2m+ V)7i, meZ.
m — L0
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There are infinitely many solutions of (20), accumulating at 5. Hence. £q is an
accumulation point of poles of .rj(t), which completes the proof of (15).

In view of (14), (15), it is natural to make the following definitions. The natural
domain of a neural net is the largest open subset of the complex plane to which the
output map t — z¥(¢) can be analytically continued. For £>0 we define the ¢!
singular set Sing(€) by setting

Sing(0) = complement of the natural domain in C, and

Sing(€ + 1) = the set of all accumulation points of Sing(¥).

These definitions are made entirely in terms of the output map, without reference
to the structure of the given neural net. On the other hand, the sets Sing(f) contain
nearly complete information on the architecture, weights and thresholds of the net.

This will allow us to read off the structure of a neural net from the analytic contin-
uation of its output map. To see how the sets Sing(¢) reflect the structure of the
net, we reason as follows.

From (14) and (15) we expect that

(21) For 1<£< L, Sing(L — £) is the union over j = 1,..., D, of the set of poles of
J:j(t), together with their accumulation points (which we ignore here), and

(22) For £> L, Sing(£) is empty.

Immediately, then, we can read off the “depth” L of the neural net; it is simply the
smallest ¢ for which Sing(f) is empty.

We need to solve for Dy, w ka 9 We proceed by induction on £.

When £ = 1, (14) and (21) show that Sing(L — 1) is the union of arithmetic pro-
gressions II}, j = 1,..., D;. Therefore, from Sing(L — 1) we can read off D; and
the IT}. (We will return to this point later in the introduction.) In view of (16),
I'I1 determines t.he weights and thresholds at layer 1, modulo signs. Thus. we have

found Dy, w wh, B2

When € > 1, we may assume that
(23) The Der, w'y, 6! are already known, for 1< # < £.

Our task is to find Dy, w
our fa.vorite k. Assume for s:mplicity that ¢y is a simple pole of J:"'I(t), and that
the z5~'(t) (k # %) are analytic in a neighborhood of #5. Then .1:‘ '(t) is given by
(17) in a neighborhood of ¢, with A already known by virtue of (23). Let U be a
small neighborhood of ¢g.

We will look at the image Y of U N Sing(L — £) under the map t — T—/'\?.; Since A,
to and Sing(L — ¢) are already known, so is Y. On the other hand, we can relate Y’
to De, wfy, 05 as follows. From (21) we see that Y is the union over j = 1,..., D,
of

(24) Y; = image of U N { Poles of a:f(t)} under t — G—_—_é;;—)-

W 9‘ In view of (23), we can find a pole ¢y of .ri__l(t) for

Jk’
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For fixed j, the poles of .cf(t) in a neighborhood of o are the t,, given by (20). We
write

¢
w; K-A

(25) > - [

““’_?K-’\
(tm — to)

— +9({m)} + [9(to) — g(tm)] -

Equation (20) shows that the first expression in brackets in (25) is equal to (2m +
1)mi. Also, since t,, — to as |m| — oo and g is analytic in a neighborhood of t,,
the second expression in brackets in (25) tends to zero. Hence,

wée A
— = (2m + 1)mi — g(to) + o(1) for large m.

Comparing this with the definition (24), we see that Y is asymptotic to the arith-
metic progression

2 D#i — g(t

(26) T = {( an Lt =9k 0):m€Z}.
wip
J

Thus, the known set Y is the union over j = 1...., D; of sets Y, with ¥; asymptotic
to the arithmetic progression Hf. From Y, we can therefore read off D, and the Hf.
(We will return to this point in a moment.) We see at once from (26) that “’;k 1s
determined up to sign by T[f-. Thus, we have found D, and ufx_. With more work,
we can also find the 9;, completing the induction on £.

The above induction shows that the structure of a neural net may be read off
from the analytic continuation of its output map. We believe that the analytic
continuation of the output map will lead to further consequences in the study of
neural nets.

Let us touch briefly on a few points which we glossed over above. First of all, suppose
we are given a set Y C C, and we know that Y is the union of sets Y;, ..., Yp, with
Y; asymptotic to an arithmetic progression II;. We assumed above that II;,...,IIp
are uniquely determined by Y. In fact, without some further hypothesis on the
IT;, this need not be true. For instance, we cannot distinguish II; U II, from I3
if II; = {odd integers}, Il = {even integers}. I3 = {all integers}. On the other
hand, we can clearly recognize II; = {all integers} and I3 = {m\/2:m an integer}
from their union IT; U II. Thus, irrational numbers enter the picture. The role of
our generic hypothesis (13) is to control the arithmetic progressions that arise in
our proof.

Secondly, suppose zf(t) has a pole at tg. We assumed for simplicity that z{(¢) is an-
alytic in a neighborhood of ¢ for k£ # . However, one of the z§(t) (k # %) may also
have a pole at to. In that case, the z;*!(t) may all be analytic in a neighborhood of

to, because the contributions of the singularities of the :r:i_ ino (E wf;:l.ri. + 6‘;"’1)
k

may cancel. Thus, the singularity at ¢, may disappear from the output map. While
this circumstance is hardly generic, it is not ruled out by our hypotheses (12), (13).
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Because singularities can disappear, we have to make technical changes in our de-
scription of Sing(¢). For example, in the discussion following (23), Y need not be
the union of the sets Y. Rather, Y is their “approximate union”. (See [F]).

Next, we should point out that the signs of the weights and thresholds require
some attention, even though we have some freedom to change signs by applyving
isomorphisms. (See (9).)

Fmally, in the definition of the natural domain, we have assumed that there is a
unique maximal open set to which the output map continues analytically. This
need not be true of a general real-analytic function on the line — for instance. take
f(t) = (1 +t)}/2, Fortunately, the natural domain is well-defined for any function
that continues analytically to the complement of a countable set. The defining
formula (5) lets us check easily that the output map continues to the complement
of a countable set, so the natural domain makes sense. This concludes our overview
of the proof of our main theorem. The full proof of our results will appear in [F].

Both the uniqueness problem and the use of analytic continuation have already
appeared in the neural net literature. In particular, it was R. Hecht-Nielson who
pointed out the réle of isomorphisms and posed the uniqueness problem. His pa-
per with Chen and Lu [CLH] on “equioutput transformations” on the space of all
neural nets influenced our work. E. Sontag [So] and H. Sussman [Su] proved sharp
uniqueness theorems for one hidden layer. The proof in [So] uses complex variables.
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Take-Home Message

Suppose an unknown neural network is placed in a
black box.

You aren't aliowed to look in the box, but you are
allowed to observe the outputs produced by the
network for arbitrary inputs.

Then, in principle, you have enough information to
determine the network architecture (number of layers
and number of nodes in each layer) and the unique
vajues for all the weights.

[ | [ Corim
o
The Output Map of a Neural Network

Fix a feed-forward neural network with the standard
sigmoid o(x) =tanhx

X ox X

L
@ iy 8 B —

The Key Question

Networks with the Same Output Map
Start with a neural network N.
Then either
1. permute the nodes in a hidden layer, or
2. fix a hidden node, and change the sign of
every weight (including the bias weight) that
involves that node

This yields a new neural network with the same
output map as N.

Inpuk Layes
When can two neural networks
i have the same output map?

ny, Yo
The map that carries input vectors Xy )
to output vectors (yi, A
is called the OUTPUT MAP of the neural network.

LT — = =...,..,E=£== }
QObvlous Examples of Two Neural Uniqueness Theorem

Let N and N' be neural networks that satisfy generic
conditions described below.

It N and N' have the same output map, then they differ
only by sign changes and permutations of hidden nodes.
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Generic Conditions

We assume that

* all weighs are non-zero

* bias weights within each layer have distinct
absolute values

= the ratio of weights from node i in layer | to nodes j
and kin layer (k1) is not equal to any fraction of the
form p/q with p, q inlegers and 1<q<100*(number of

T ST T ——

T ——

Outline of the Proof

« it's enough lo consider networks with one input node
and one output node (see below)

« all node outputs are now functions of a single, real
variable { (the network input)

« analytically continue the network output to a function f
of a single, complex variable t

= the quaiitative geomelry of the poles of the function f

Reduction to a Network with
Single input and Output Nodes

= {focus attention on a single output node, ignoring the
others

« study only input data with a single non-zero entry

& —— 0 —

Determining the Network Architecture from the Picture
= three kinds of singularities (small dots, small squares,
large dots)

=2 three layers of sigmoids, i.e. two hidden

layers and an output layer

= three "spiral arms" of small squares accumulate at
each large dot

= three nodes in the second hidden layer
* two “spiral arms® of small dots accumulate at each
small square

=> two nodes in the first hidden layer

nodes in layer |) determines the network architeclure (see below)
Some such assumptions are needed lo avoid obvious « the asymptotics of the function I near its singularities
counterexamples. determine the weights
'_% = LT |

B by 1 0 M

Geometrlc Description of the Poles

¥ Drmaginary snia)

' {roal ania)

« poles (small dols) accumulate at essentlal singutaritles
(small squeres)

« essentlal singularities (small squares) accumulaie at
more complicated essentlal singularities (large dots)

P LT T —
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Determining the Network Architecture from the Picture
(cont'd)

* from the network reduction we know that there is
one input node and one output node

= {herefore, the network architecture is as pictured




