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We show how an "Elman" network architecture, constructed from 
recurrently connected oscillatory associative memory network mod­
ules, can employ selective "attentional" control of synchronization 
to direct the flow of communication and computation within the 
architecture to solve a grammatical inference problem. 
Previously we have shown how the discrete time "Elman" network 
algorithm can be implemented in a network completely described 
by continuous ordinary differential equations. The time steps (ma­
chine cycles) of the system are implemented by rhythmic variation 
(clocking) of a bifurcation parameter. In this architecture, oscilla­
tion amplitude codes the information content or activity of a mod­
ule (unit), whereas phase and frequency are used to "softwire" the 
network. Only synchronized modules communicate by exchang­
ing amplitude information; the activity of non-resonating modules 
contributes incoherent crosstalk noise. 
Attentional control is modeled as a special subset of the hidden 
modules with ouputs which affect the resonant frequencies of other 
hidden modules. They control synchrony among the other mod­
ules and direct the flow of computation (attention) to effect transi­
tions between two subgraphs of a thirteen state automaton which 
the system emulates to generate a Reber grammar. The internal 
crosstalk noise is used to drive the required random transitions of 
the automaton. 
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1 Introduction 

Recordings of local field potentials have revealed 40 to 80 Hz oscillation in vertebrate 
cortex [Freeman and Baird, 1987, Gray and Singer, 1987]. The amplitude patterns 
of such oscillations have been shown to predict the olfactory and visual pattern 
recognition responses of a trained animal. There is further evidence that although 
the oscillatory activity appears to be roughly periodic, it is actually chaotic when 
examined in detail. This preliminary evidence suggests that oscillatory or chaotic 
network modules may form the cortical substrate for many of the sensory, motor, 
and cognitive functions now studied in static networks. 

It remains be shown how networks with more complex dynamics can performs these 
operations and what possible advantages are to be gained by such complexity. We 
have therefore constructed a parallel distributed processing architecture that is in­
spired by the structure and dynamics of cerebral cortex, and applied it to the prob­
lem of grammatical inference. The construction views cortex as a set of coupled 
oscillatory associative memories, and is guided by the principle that attractors must 
be used by macroscopic systems for reliable computation in the presence of noise. 
This system must function reliably in the midst of noise generated by crosstalk from 
it's own activity. Present day digital computers are built of flip-flops which, at the 
level of their transistors, are continuous dissipative dynamical systems with differ­
ent attractors underlying the symbols we call "0" and "1". In a similar manner, the 
network we have constructed is a symbol processing system, but with analog input 
and oscillatory subsymbolic representations. 

The architecture operates as a thirteen state finite automaton that generates the 
symbol strings of a Reber grammar. It is designed to demonstrate and study the 
following issues and principles of neural computation: (1) Sequential computation 
with coupled associative memories. (2) Computation with attractors for reliable 
operation in the presence of noise. (3) Discrete time and state symbol processing 
arising from continuum dynamics by bifurcations of attractors. (4) Attention as 
selective synchronization controling communication and temporal program flow. (5) 
chaotic dynamics in some network modules driving randomn choice of attractors in 
other network modules. The first three issues have been fully addressed in a previous 
paper [Baird et. al., 1993], and are only briefly reviewed. ".le focus here on the last 
two. 

1.1 Attentional Processing 

An important element of intra-cortical communication in the brain, and between 
modules in this architecture, is the ability of a module to detect and respond to 
the proper input signal from a particular module, when inputs from other modules 
irrelevant to the present computation are contributing crosstalk noise. This is smilar 
to the problem of coding messages in a computer architecture like the Connection 
Machine so that they can be picked up from the common communication buss line 
by the proper receiving module. 

Periodic or nearly periodic (chaotic) variation of a signal introduces additional de­
grees of freedom that can be exploited in a computational architecture. We investi­
gate the principle that selective control of synchronization, which we hypopthesize 
to be a model of "attention", can be used to solve this coding problem and control 
communication and program flow in an architecture with dynamic attractors. 

The architecture illust.rates the notion that synchronization not only "binds" sen-
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sory inputs into "objects" [Gray and Singer, 1987], but binds the activity of selected 
cortical areas into a functional whole that directs behavior. It is a model of "at­
tended activity" as that subset which has been included in the processing of the 
moment by synchronization. This is both a spatial and temporal binding. Only the 
inputs which are synchronized to the internal oscillatory activity of a module can 
effect previously learned transitions of at tractors within it. For example, consider 
two objects in the visual field separately bound in primary visual cortex by synchro­
nization of their components at different phases or frequencies. One object may be 
selectively attended to by its entrainment to oscillatory processing at higher levels 
such as V4 or IT. These in turn are in synchrony with oscillatory activity in motor 
areas to select the attractors there which are directing motor output. 

In the architecture presented here, we have constrained the network dynamics so 
that there exist well defined notions of amplitude, phase, and frequency. The net­
work has been designed so that amplitude codes the information content or activity 
of a module, whereas phase and frequency are used to "softwire" the network. An 
oscillatory network module has a passband outside of which it will not synchro­
nize with an oscillatory input. Modules can therefore easily be de synchronized 
by perturbing their resonant frequencies. Furthermore, only synchronized modules 
communicate by exchanging amplitude information; the activity of non-resonating 
modules contributes incoherant crosstalk or noise. The flow of communication be­
tween modules can thus be controled by controlling synchrony. By changing the 
intrinsic frequency of modules in a patterned way, the effective connectivity of the 
network is changed. The same hardware and connection matrix can thus subserve 
many different computations and patterns of interaction between modules without 
crosstalk problems. 

The crosstalk noise is actually essential to the function of the system. It serves as 
the noise source for making random choices of output symbols and automaton state 
transitions in this architecture, as we discuss later. In cortex there is an issue as to 
what may constitute a source of randomness of sufficient magnitude to perturb the 
large ensemble behavior of neural activity at the cortical network level. It does not 
seem likely that the well known molecular fluctuations which are easily averaged 
within one or a few neurons can do the job. The architecture here models the 
hypothesis that deterministic chaos in the macroscopic dynamics of a network of 
neurons, which is the same order of magnitude as the coherant activity, can serve 
this purpose. 

In a set of modules which is desynchronized by perturbing the resonant frequencies 
of the group, coherance is lost and "random" phase relations result. The character 
of the model time traces is irregular as seen in real neural ensemble activity. The be­
havior of the time traces in different modules of the architecture is similar to the tem­
porary appearance and switching of synchronization between cortical areas seen in 
observations of cortical processing during sensory/motor tasks in monkeys and hu­
mans [Bressler and Nakamura, 1993]. The structure of this apparently chaotic sig­
nal and its use in network learning and operation are currently under investigation. 

2 Normal Form Associative Memory Modules 

The mathematical foundation for the construction of network modules is contained 
in the normal form projection algorithm [Baird and Eeckman, 1993]. This is a 
learning algorithm for recurrent analog neural networks which allows associative 
memory storage of analog patterns, continuous periodic sequences, and chaotic 



70 Baird, Troyer, and Eeckman 

attractors in the same network. An N node module can be shown to function 
as an associative memory for up to N /2 oscillatory, or N /3 chaotic memory at­
tractors [Baird and Eeckman, 1993]. A key feature of a net constructed by this 
algorithm is that the underlying dynamics is explicitly isomorphic to any of a 
class of standard, well understood nonlinear dynamical systems - a normal form 
[Guckenheimer and Holmes, 1983]. 

The network modules of this architecture were developed previously as models of 
olfactory cortex with distributed patterns of activity like those observed experimen­
tally [Baird, 1990, Freeman and Baird, 1987]. Such a biological network is dynami­
cally equivalent to a network in normal form and may easily be designed, simulated, 
and theoretically evaluated in these coordinates. When the intramodule competi­
tion is high, they are "memory" or winner-take-all cordinates where attractors have 
one oscillator at maximum amplitude, with the other amplitudes near zero. In fig­
ure two, the input and output modules are demonstrating a distributed amplitude 
pattern ( the symbol "T"), and the hidden and context modules are two-attractor 
modules in normal form coordinates showing either a right or left side active. 

In this paper all networks are discussed in normal form coordinates. By analyz­
ing the network in these coordinates, the amplitude and phase dynamics have a 
particularly simple interaction. When the input to a module is synchronized with 
its intrinsic oscillation, the amplitude of the periodic activity may be considered 
separately from the phase rotation. The module may then be viewed as a static 
network with these amplitudes as its activity. 

To illustrate the behavior of individ ualnetwork modules, we examine a binary (two­
attractor) module; the behavior of modules with more than two attractors is similar. 
Such a unit is defined in polar normal form coordinates by the following equations 
of the Hopf normal form: 

rli 1l.ir li - Cdi + (d - bsin(wclockt))rlir5i + L wtlj cos(Oj - Oli) 
j 

rOi 1l.jr Oi - crgi + (d - bsin(wclockt))roirii + L wijlj cos(Oj - OOi) 
j 

Oli Wi + L wt(Ij /1·li) sin(Oj - Oli) 
j 

OOi Wi + L wij(Ij/rOi) sin(Oj - OOi) 
j 

The clocked parameter bsin(wclockt) is used to implement the discrete time machine 
cycle of the Elman architecture as discussed later. It has lower frequency (1/10) 
than the intrinsic frequency of the unit Wi. 

Examination of the phase equations shows that a unit has a strong tendency 
to synchronize with an input of similar frequency. Define the phase difference 
cp = 00 - OJ = 00 - wJt between a unit 00 and it's input OJ. For either side of a 
unit driven by an input of the same frequency, WJ = Wo, There is an attractor 
at zero phase difference cp = 00 - OJ = ° and a repellor at cp = 180 degrees. In 
simulations, the interconnected network of these units described below synchro­
nizes robustly within a few cycles following a perturbation. If the frequencies of 
some modules of the architecture are randomly dispersed by a significant amount, 
WJ - Wo #- 0, phase-lags appear first, then synchronization is lost in those units. An 
oscillating module therefore acts as a band pass filter for oscillatory inputs. 
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When the oscillators are sychronized with the input, OJ - Oli = 0, the phase terms 
cos(Oj - Oli) = cos(O) = 1 dissappear. This leaves the amplitude equations rli 
and rOi with static inputs E j wt;Ij and Ej wijlj. Thus we have network modules 
which emulate static network units in their amplitude activity when fully phase­
locked to their input. Amplitude information is transmitted between modules, with 
an oscillatory carrier. 

For fixed values of the competition, in a completely synchronized system, the in­
ternal amplitude dynamics define a gradient dynamical system for a fourth order 
energy fUllction. External inputs that are phase-locked to the module's intrinsic 
oscillation simply add a linear tilt to the landscape. 

For low levels of competition, there is a broad circular valley. When tilted by 
external input, there is a unique equilibrium that is determined by the bias in tilt 
along one axis over the other. Thinking of Tli as the "acitivity" of the unit, this 
acitivity becomes a monotonically increasing function of input. The module behaves 
as an analog connectionist unit whose transfer function can be approximated by a 
sigmoid. We refer to this as the "analog" mode of operation of the module. 

With high levels of competition, the unit will behave as a binary (bistable) digital 
flip-flop element. There are two deep potential wells, one on each axis. Hence the 
module performs a winner-take-all choice on the coordinates of its initial state and 
maintains that choice "clamped" and independent of external input. This is the 
"digital" or "quantized" mode of operation of a module. We think of one attractor 
within the unit as representing "1" (the right side in figure two) and the other as 
representing "0" . 

3 Elman Network of Oscillating Associative Memories 

As a benchmark for the capabilities of the system, and to create a point of con­
tact to standard network architectures, we have constructed a discrete-time recur­
rent "Elman" network [Elman, 1991] from oscillatory modules defined by ordinary 
differential equations. Previously we con- s 
structed a system which functions as the six Figure 1. 
state finite automaton that perfectly recog-
nizes or generates the set of strings defined by 
the Reber grammar described in Cleeremans 
et. al. [Cleeremans et al., 1989]. We found 
the connections for this network by using the 
backpropagation algorithm in a static network 
that approximates the behavior of the ampli­
tudes of oscillation in a fully synchronized dy­
namic network [Baird et al., 1993]. 
Here we construct a system that emulates 
the larger 13 state automata similar (less one 
state) to the one studied by Cleermans, et al 
in the second part of their paper. The graph 
of this automaton consists of two subgraph 
branches each of which has the graph struc­
ture of the automaton learned as above, but 
with different assignments of transition out-
put symbols (see fig. 1). T 
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We use two types of modules in implementing the Elman network architecture shown 
in figure two below. The input and output layer each consist of a single associative 
memory module with six oscillatory attractors (six competing oscillatory modes), 
one for each of the six symbols in the grammar. The hidden and context layers 
consist of the binary "units" above composed of a two oscillatory attractors. The 
architecture consists of 14 binary modules ill the hidden and context layers - three 
of which are special frequency control modules. The hidden and context layers are 
divided into four groups: the first three correspond to each of the two subgraphs plus 
the start state, and the fourth group consists of three special control modules, each 
of which has only a special control output that perturbs the resonant frequencies of 
the modules (by changing their values in the program) of a particular state coding 
group when it is at the zero attractor, as illustrated by the dotted control lines in 
figure two. This figure shows control unit two is at the one attractor (right side 
of the square active) and the hidden units coding for states of subgraph two are 
in synchrony with the input and output modules. Activity levels oscillate up and 
down through the plane of the paper. Here in midcycle, competition is high in all 
modules. 

Figure 2. OSCILLATING ELMAN NETWORK 

OUTPUT 

INPUT 

The discrete machine cycle of the Elman algorithm is implemented by the sinusoidal 
variation (clocking) of the bifurcation parameter in the normal form equations that 
determines the level of intramodule competition [Baird et al., 1993]. At the begin­
ning of a machine cycle, when a network is generating strings, the input and context 
layers are at high competition and their activity is clamped at the bottom of deep 
basins of attraction. The hidden and output modules are at low competition and 
therefore behave as a traditional feedforward network free to take on analog values. 
In this analog mode, a real valued error can be defined for the hidden and output 
units and standard learning algorithms like backpropagation can be used to train 
the connections. 

Then the situation reverses. For a Reber grammar there are always two equally pos­
sible next symbols being activated in the output layer, and we let the crosstalk noise 
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break this symmetry so that the winner-take-all dynamics of the output module can 
chose one. High competition has now also "quantized" and clamped the activity in 
the hidden layer to a fixed binary vector. Meanwhile, competition is lowered in the 
input and context layers, freeing these modules from their attractors. An identity 
mapping from hidden to context loads the binarized activity of the hidden layer 
into the context layer for the next cycle, and an additional identity mapping from 
the output to input module places the chosen output symbol into the input layer 
to begin the next cycle. 

4 Attentional control of Synchrony 

We introduce a model of attention as control of program flow by selective synchro­
nization. The attentional controler itself is modeled in this architecture as a special 
set of three hidden modules with ouputs that affect the resonant frequencies of the 
other corresponding three subsets of hidden modules. Varying levels of intramodule 
competition control the large scale direction of information flow between layers of the 
architecture. To direct information flow on a finer scale, the attention mechanism 
selects a subset of modules within each layer whose output is effective in driving the 
state transition behavior of the system. 

By controling the patterns of synchronization within the network we are able to 
generate the grammar obtained from an automaton consisting of two subgraphs 
connected by a single transition state (figure 1). During training we enforce a seg­
regation of the hidden layer code for the states of the separate subgraph branches of 
the automaton so that different sets of synchronized modules learn to code for each 
subgraph of the automaton. Then the entire automaton is hand constructed with 
an additional hidden module for the start state between the branches. Transitions 
in the system from states in one subgraph of the automaton to the other are made 
by "attending" to the corresponding set of nodes in the hidden and context layers. 
This switching of the focus of attention is accomplished by changing the patterns 
of synchronization within the network which changes the flow of communication 
between modules. 

Each control module modulates the intrinsic frequency of the units coding for the 
states a single su bgraph or the unit representing the start state. The control modules 
respond to a particular input symbol and context to set the intrinsic frequency of 
the proper subset of hidden units to be equal to the input layer frequency. As 
described earlier, modules can easily be desynchronized by perturbing their resonant 
frequencies. By perturbing the frequencies of the remaining modules away from the 
input frequency, these modules are no longer communicating with the rest of the 
network. Thus coherent information flows from input to output only through one 
of three channels. Viewing the automata as a behavioral program, the control 
of synchrony constitutes a control of the program flow into its subprograms (the 
subgraphs of the automaton). 

When either exit state of a subgraph is reached, the "B" (begin) symbol is then 
emitted and fed back to the input where it is connected through the first to second 
layer weight matrix to the attention control modules. It turns off the synchrony 
of the hidden states of the subgraph and allows entrainment of the start state to 
begin a new string of symbols. This state in turn activates both a "T" and a "P' in 
the output module. The symbol selected by the crosstalk noise and fed back to the 
input module is now connected to the control modules through the weight matrix. 
It desynchronizes the start state module, synchronizes in the subset of hidden units 
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coding for the states of the appropriate subgraph, and establishes there the start 
state pattern for that subgraph. 

Future work will investigate the possibilities for self-organization of the patterns of 
synchrony and spatially segregated coding in the hidden layer during learning. The 
weights for entire automata, including the special attention control hidden units, 
should be learned at once. 
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Abstract 

Performance of many nonparametric methods critically depends 
on the strategy for positioning knots along the regression surface. 
Constrained Topological Mapping algorithm is a novel method that 
achieves adaptive knot placement by using a neural network based 
on Kohonen's self-organizing maps. We present a modification to 
the original algorithm that provides knot placement according to 
the estimated second derivative of the regression surface. 

1 INTRODUCTION 

Here we consider regression problems. Using mathematical notation, we seek to find 
a function f of N - 1 predictor variables (denoted by vector X) from a given set of 
n data points, or measurements, Zi = (Xi , Yi ) (i = 1, ... , n) in N-dimensional 
sample space: 

Y = f(X) + error (l) 

where error is unknown (but zero mean) and its distribution may depend on X. The 
distribution of points in the training set can be arbitrary, but uniform distribution 
in the domain of X is often used. 

• Responsible for correspondence, Telephone (715) 425-3769, e-mail 
hosseiu.najafi@uwrf.edu. 
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The goal of this paper is to show how statistical considerations can be used to 
improve the performance of a novel neural network algorithm for regression [eN91], 
in order to achieve adaptive positioning of knots along the regression surface. By 
estimating and employing the second derivative of the underlying function, the 
modified algorithm is made more flexible around the regions with large second 
derivative. Through empirical investigation, we show that this modified algorithm 
allocates more units around the regions where the second derivative is large. This 
increase in the local knot density introduces more flexibility into the model (around 
the regions with large second derivative) and makes the model less biased around 
these regions. However, no over-fitting is observed around these regions. 

2 THE PROBLEM OF KNOT LOCATION 

One of the most challenging problems in practical implementations of adaptive 
methods for regression is adaptive positioning of knots along the regression surface. 
Typical1y, knot positions in the domain of X are chosen as a subset of the training 
data set, or knots are uniformly distributed in X. Once X-locations are fixed, 
commonly used data-driven methods can be applied to determine the number of 
knots. However, de Boor [dB78] showed that a polynomial spline with unequally 
spaced knots can approximate an arbitrary function much better than a spline 
with equally spaced knots. Unfortunately, the minimization problem involved in 
determination of the optimal placement of knots is highly nonlinear and the solution 
space is not convex [FS89). Hence, t.he performance of many recent algorit.hms that 
include adaptive knot placement (e .g. MARS) is difficult to evaluate analytically. In 
addition, it is well-known that when data points are uniform, more knots should be 
located where the second derivative of the function is large. However, it is difficult to 
extend these results for non-uniform data in conjunction with data-dependent noise. 
Also, estimating the second derivative of a true function is necessary for optimal 
knot placement. Yet, the function itself is unknown and its estimation depends on 
the good placement of knots. This suggests the need for some iterative procedure 
that alternates between function estimation(smoothing) and knot posit.ioning steps. 

Many ANN methods effectively try to solve the problem of adaptive knot loca­
tion using ad hoc strategies that are not statistically optimal. For example, local 
adaptive methods [Che92) are generalizat.ion of kernel smoothers where the ker­
nel functions and kernel centers are determined from the data by some adaptive 
algorithm. Examples of local adaptive methods include several recently proposed 
ANN models known as radial basis function (RBF) networks, regularization net­
works, networks with locally tuned units etc [BL88, MD89, PG90). When applied 
to regression problems, all these methods seek to find regression estimate in the 
(most general) form 2::=1 biHi(X, Ci ) where X is the vector of predictor variable, 
Ci is the coordinates of the i-th 'center' or 'bump', Hi is the response function of 
the kernel type (the kernel width may be different for each center i), bi are linear 
coefficients to be determined, and k is the total number of knots or 'centers'. 

Whereas the general formulat.ion above assumes global opt.imizat.ion of an error mea­
sure for the training set with respect. to all parameters, i.e. center locations, kernel 
width and linear coefficients, this is not practically feasible because the error surface 
is generally non-convex and may have local minima [PG90, MD89). Hence most 
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practical approaches first solve the problem of center(knot) location and assume 
identical kernel functions. Then the remaining problem of finding linear coefficients 
bi is solved by using familiar methods of Linear Algebra [PG90] or gradient-descent 
techniques [MD89]. It appears that the problem of center locations is the most 
critical one for the local neural network techniques. Unfortunately, heuristics used 
for center location are not based on any statistical considerations, and empirical 
results are too sketchy [PG90, MD89]. In statistical methods knot locations are 
typically viewed as free parameters of the model, and hence the number of knots 
directly controls the model complexity. Alternatively, one can impose local regu­
larization constraints on adjacent knot locations, so that neighboring knots cannot 
move independently. Such an approach is effectively implemented in the model of 
self-organization known as Kohonen's Self-Organizing Maps (SOM) [Koh84]. This 
model uses a set of units ("knots") with neighborhood relations between units de­
fined according to a fixed topological structure (typically 1 D or 2D grid). During 
training or self-organization, data points are presented to the map iteratively, one 
at a time, and the unit closest to the data moves towards it, also pulling along its 
topological neighbors. 

3 MODIFIED CTM ALGORITHM FOR ADAPTIVE 
KNOT PLACEMENT 

The SOM model has been applied to nonparametric regression by Cherkassky and 
Najafi [CN9I] in order to achieve adaptive positioning of knots along the regres­
sion surface. Their technique, called Constrained Topological Mapping (CTM), is a 
modification of Kohonen's self-organization suitable for regression problems. CTM 
interprets the units of the Kohonen map as movable knots of a regression surface. 
Correspondingly, the problem of finding regression estimate can be stated as the 
problem of forming an M - dimensional topological map using a set of samples 
from N-dimensional sample space (where AI ~ N - 1) . Unfortunately, straight­
forward application of the Kohonen Algorithm to regression problem does not work 
well [CN9I]. Because, the presence of noise in the training data can fool the algo­
rithm to produce a map that is a multiple-valued function of independent variables 
in the regression problem (1). This problem is overcome in the CTM algorithm, 
where the nearest neighbor is found in the subspace of predictor variables, rather 
than in the input(sample) space [CN9I]. 

We present next a concise description of the CTM algorithm. Using standard for­
mulation (1) for regression, the training data are N-dimensional vectors Zi = (Xi 
, Yi), where Y i is a noisy observation of an unknown function of N - 1 predictor 
variables given by vector Xi. The CTM algorithm constructs an M - dimensional 
topological map in N-dimensional sample space (M ~ N - 1) as follows: 

o. Initialize the M - dimensional t.opological map in N-dimensional sample 
space. 

1. Given an input vector Z in N-dimensional sample space, find the closest 
(best matching) unit i in the subspace of independent val·iables: 

II Z*(k) - Wi II = Minj{IIZ* - W; II} Vj E [I, ... ,L] 
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where Z· is the projection of the input vector onto the subspace of inde­
pendent variables, Wi is the projection of the weight vector of unit j, and 
k is the discrete time step. 

2. Adjust the units' weights according to the following and return to 1: 

'Vi (2) 

where /3( k) is the learning rate and Cj (k) is the neighborhood for unit i at 
iteration k and are given by: 

(k: .. ) 1 

/3(k) = /30 x (~~) ,Cj(k) = -----~~ 
o 5 ( IIi - ill ) 

exp' /3(k) x So 

(3) 

where kmax is the final value of the time step (kmax is equal to the product of 
the training set size by the number of times it was recycled), /30 is the initial 
learning rate, and /3/ is the final learning rate (/30 = 1.0 and /3/ = 0.05 were 
used in all of our experiments), Iii - ill is the topological distance between 
the unit i and the best matched unit i and So is the initial size of the map 
(i.e., the number of units per dimension) . 

Note that CTM method achieves placement of units (knots) in X-space according 
to density of training data. This is due to the fact that X-coordinates of CTM units 
during training follow the standard Kohonen self-organization algorithm [Koh84], 
which is known to achieve faithful approximation of an unknown distribution. How­
ever, existing CTM method does not place more knots where the underlying function 
changes rapidly. The improved strategy for CTM knot placement in X-space takes 
into account estimated second derivative of a function as is described next. 

The problem with estimating second derivative is that the function itself is unknown. 
This suggests using an iterative strategy for building a model, i.e., start with a crude 
model, estimate the second derivative based on this crude model, use the estimated 
second derivative to refine the model, etc. This strategy can be easily incorporated 
into the CTM algorithm due to its iterative nature. Specifically, in CTM method 
the map of knots(i.e., the model) becomes closer and closer to the final regression 
model as the training proceeds. Therefore, at each iteration, the modified algorithm 
estimates the second derivative at the best matching unit (closest to the presented 
data point in X-space), and allows additional movement of knots proportional to 
this estimate. Estimating the second derivative from the map (instead of using the 
training data) makes sense due to smoothing properties of CTM. 

The modified CTM algorithm can be summarized as follows: 

1. Present training sample Zi = (Xi, Yi) to the map and find the closest (best 
matching) unit i in the su bspace of independent variables to this data point. 
(same as in the original CTM) 

2. Move the the map (i.e., the best matching unit and all its neighbors) toward 
the presented data point (same as in the original CTM) 
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3. Estimate average second derivative of the function at the best matching 
unit based on the current positions of the map units. 

4. Normalize this average second derivative to an interval of [0,1]. 

5. Move the map toward the presented data point at a rate proportional to 
the estimated normalizes average second derivative and iterate. 

For multivariate functions only gradients along directions given by the topological 
structure ofthe map can be estimated in step 4. For example, given a 2-dimensional 
mesh that approximates function I(XI, X2), every unit of the map (except the border 
units for which there will be only one neighbor) has two neighboring units along 
each topological dimension. These neighboring units can be used to approximate 
the function's gradients along the corresponding topological dimension of the map. 
These values along each dimension can then be averaged to provide a local gradient 
estimate at a given knot. 

In step 5, estimated average second derivative I" is normalized to [0,1] range using 
1/Ji = 1 - exp(lf"ll tan(T)) This is done because the value of second derivative is used 
as the learning rate. 

In step 6, the map is modified according to the following equation: 

'Vj (4) 

It is this second movement of the map that allows for more flexibility around the 
region of the map where the second derivative is large. The process described by 
equation (4) is equivalent to pulling all units towards the data, with the learning 
rate proportional to estimated second derivative at the best matched unit. Note 
that the influence of the second derivative is gradually increased during the process 
of self-organization by the factor (1-,B( k)). This factor account for the fact that the 
map becomes closer and closer to the underlying function during self-orga.nization; 
hence, providing a more reliable estimate of second deriva.tive. 

4 EMPIRICAL COMPARISON 

Performance of the two algorithms (original and modified CTM) was compared for 
several low-dimensional problems. In all experiments the two algorithms used the 
same training set of 100 data points for the univariate problems and 400 data points 
for the 2-variable problems. 

The training samples (Xi, Yi) were generated according to (1), with Xi randomly 
drawn from a uniform distribution in the closed interval [-1,1]' and the error drawn 
from the normal distribution N(O, (0.1)2). Regression estimates produced by the 
self-organized maps were tested on a different set of n = 200 samples (test set) 
generated in the same manner as the training set. 

We used the Average Residual, AR = j ~ L~=l [Yi - I(Xd]2, as the performance 

measure on the test set. Here, I(X) is the piecewise linear estimate of the function 
with knot locations provided by coordinates of the units of trained CTM. The Aver-
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age Residual gives an indication of standard deviation of the overall generalization 
error. 
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Figure 1: A 50 unit map formed by the original and modified algorithm for the 
Gaussian function. 
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Figure 2: A 50 unit map formed by the original and modified algorithm for the step 
function. 

We used a gaussian function (f(x) = exp-64X2
) and a step function for our first set 

of experiments. Figure 1 and 2 show the actual maps formed by the original and 
modified algorithm for these functions. It is clear from these figures that the modi­
fied algorithm allocates more units around the regions where the second derivative 
is large. This increase in the local knot density has introduced more flexibility into 
the model around the regions with large second derivatives. As a result of this the 

1 
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model is less biased around these regions. However, there is no over-fitting in the 
regions where the second derivative is large. 
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Figure 3: Average Residual error as a function of the size of the map for the 3-
dimensional Step function 
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Figure 4: Average Residual error as a function of the size of the map for the 3-
dimensional Sine function 

To compare the behavior of the two algorithms in their predictability of structureless 
data, we trained them on a constant function I(x) = a with eTT01' = N(O, (0.1)2). 
This problem is known as smoothing pure noise in regression analysis. It has been 
shown [CN9l] that the original algorithm handles this problem well and quality of 
CTM smoothing is independent of the number of units in the map. Our experiments 

70 

70 
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show that the modified algorithm performs as good as the original one in this 
respect. 

Finally, we used the following two-variable functions (step, and sine) to see how 
well the modified algorithm performs in higher dimensional settings. 

Ste : f(x x) = {I for ((x~ < 0.5) 1\ (X2 < 0.5)) V ((Xl ~ 0.5) 1\ (X2 ~ 0.5)) 
PI, 2 0 otherwise 

Sine: f(XI, X2) = sin (27rJ(xt)2 + (X2)2) 

The results of these experiments are summarized in Figure 3 and 4. Again we see 
that the modified algorithm outperforms the original algorithm. Note that the above 
example of a two-variable step function can be easily handled by recursive partition­
ing techniques such as CART [BFOS84]. However, recursive methods are sensitive to 
coordinate rotation. On the other hand, CTM is a coordinate-independent method, 
i.e. its performance is independent of any affine transformation in X-space. 
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